// Copyright Nick Thompson, 2017 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) /* * This class performs exp-sinh quadrature on half infinite intervals. * * References: * * 1) Tanaka, Ken'ichiro, et al. "Function classes for double exponential integration formulas." Numerische Mathematik 111.4 (2009): 631-655. */ #ifndef BOOST_MATH_QUADRATURE_EXP_SINH_HPP #define BOOST_MATH_QUADRATURE_EXP_SINH_HPP #include #include #include #include #include namespace boost{ namespace math{ namespace quadrature { template > class exp_sinh { public: exp_sinh(size_t max_refinements = 9) : m_imp(std::make_shared>(max_refinements)) {} template auto integrate(const F& f, Real a, Real b, Real tol = boost::math::tools::root_epsilon(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr)->decltype(std::declval()(std::declval())) const; template auto integrate(const F& f, Real tol = boost::math::tools::root_epsilon(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr)->decltype(std::declval()(std::declval())) const; private: std::shared_ptr> m_imp; }; template template auto exp_sinh::integrate(const F& f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels)->decltype(std::declval()(std::declval())) const { typedef decltype(f(a)) K; static_assert(!std::is_integral::value, "The return type cannot be integral, it must be either a real or complex floating point type."); using std::abs; using boost::math::constants::half; using boost::math::quadrature::detail::exp_sinh_detail; static const char* function = "boost::math::quadrature::exp_sinh<%1%>::integrate"; // Neither limit may be a NaN: if((boost::math::isnan)(a) || (boost::math::isnan)(b)) { return static_cast(policies::raise_domain_error(function, "NaN supplied as one limit of integration - sorry I don't know what to do", a, Policy())); } // Right limit is infinite: if ((boost::math::isfinite)(a) && (b >= boost::math::tools::max_value())) { // If a = 0, don't use an additional level of indirection: if (a == static_cast(0)) { return m_imp->integrate(f, error, L1, function, tolerance, levels); } const auto u = [&](Real t)->K { return f(t + a); }; return m_imp->integrate(u, error, L1, function, tolerance, levels); } if ((boost::math::isfinite)(b) && a <= -boost::math::tools::max_value()) { const auto u = [&](Real t)->K { return f(b-t);}; return m_imp->integrate(u, error, L1, function, tolerance, levels); } // Infinite limits: if ((a <= -boost::math::tools::max_value()) && (b >= boost::math::tools::max_value())) { return static_cast(policies::raise_domain_error(function, "Use sinh_sinh quadrature for integration over the whole real line; exp_sinh is for half infinite integrals.", a, Policy())); } // If we get to here then both ends must necessarily be finite: return static_cast(policies::raise_domain_error(function, "Use tanh_sinh quadrature for integration over finite domains; exp_sinh is for half infinite integrals.", a, Policy())); } template template auto exp_sinh::integrate(const F& f, Real tolerance, Real* error, Real* L1, std::size_t* levels)->decltype(std::declval()(std::declval())) const { static const char* function = "boost::math::quadrature::exp_sinh<%1%>::integrate"; using std::abs; if (abs(tolerance) > 1) { std::string msg = std::string(__FILE__) + ":" + std::to_string(__LINE__) + ":" + std::string(function) + ": The tolerance provided is unusually large; did you confuse it with a domain bound?"; throw std::domain_error(msg); } return m_imp->integrate(f, error, L1, function, tolerance, levels); } }}} #endif