// Copyright John Maddock 2010, 2012. // Copyright Paul A. Bristow 2011, 2012. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED #define BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED #include namespace boost{ namespace math{ namespace constants{ namespace detail{ template template inline T constant_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return ldexp(acos(T(0)), 1); /* // Although this code works well, it's usually more accurate to just call acos // and access the number types own representation of PI which is usually calculated // at slightly higher precision... T result; T a = 1; T b; T A(a); T B = 0.5f; T D = 0.25f; T lim; lim = boost::math::tools::epsilon(); unsigned k = 1; do { result = A + B; result = ldexp(result, -2); b = sqrt(B); a += b; a = ldexp(a, -1); A = a * a; B = A - result; B = ldexp(B, 1); result = A - B; bool neg = boost::math::sign(result) < 0; if(neg) result = -result; if(result <= lim) break; if(neg) result = -result; result = ldexp(result, k - 1); D -= result; ++k; lim = ldexp(lim, 1); } while(true); result = B / D; return result; */ } template template inline T constant_two_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return 2 * pi > >(); } template // 2 / pi template inline T constant_two_div_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return 2 / pi > >(); } template // sqrt(2/pi) template inline T constant_root_two_div_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt((2 / pi > >())); } template template inline T constant_one_div_two_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return 1 / two_pi > >(); } template template inline T constant_root_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(pi > >()); } template template inline T constant_root_half_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(pi > >() / 2); } template template inline T constant_root_two_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(two_pi > >()); } template template inline T constant_log_root_two_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return log(root_two_pi > >()); } template template inline T constant_root_ln_four::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(log(static_cast(4))); } template template inline T constant_e::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // // Although we can clearly calculate this from first principles, this hooks into // T's own notion of e, which hopefully will more accurate than one calculated to // a few epsilon: // BOOST_MATH_STD_USING return exp(static_cast(1)); } template template inline T constant_half::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return static_cast(1) / static_cast(2); } template template inline T constant_euler::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING // // This is the method described in: // "Some New Algorithms for High-Precision Computation of Euler's Constant" // Richard P Brent and Edwin M McMillan. // Mathematics of Computation, Volume 34, Number 149, Jan 1980, pages 305-312. // See equation 17 with p = 2. // T n = 3 + (M ? (std::min)(M, tools::digits()) : tools::digits()) / 4; T lim = M ? ldexp(T(1), 1 - (std::min)(M, tools::digits())) : tools::epsilon(); T lnn = log(n); T term = 1; T N = -lnn; T D = 1; T Hk = 0; T one = 1; for(unsigned k = 1;; ++k) { term *= n * n; term /= k * k; Hk += one / k; N += term * (Hk - lnn); D += term; if(term < D * lim) break; } return N / D; } template template inline T constant_euler_sqr::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return euler > >() * euler > >(); } template template inline T constant_one_div_euler::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(1) / euler > >(); } template template inline T constant_root_two::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(static_cast(2)); } template template inline T constant_root_three::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(static_cast(3)); } template template inline T constant_half_root_two::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(static_cast(2)) / 2; } template template inline T constant_ln_two::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // // Although there are good ways to calculate this from scratch, this hooks into // T's own notion of log(2) which will hopefully be accurate to the full precision // of T: // BOOST_MATH_STD_USING return log(static_cast(2)); } template template inline T constant_ln_ten::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return log(static_cast(10)); } template template inline T constant_ln_ln_two::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return log(log(static_cast(2))); } template template inline T constant_third::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(1) / static_cast(3); } template template inline T constant_twothirds::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(2) / static_cast(3); } template template inline T constant_two_thirds::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(2) / static_cast(3); } template template inline T constant_three_quarters::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(3) / static_cast(4); } template template inline T constant_sixth::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(1) / static_cast(6); } // Pi and related constants. template template inline T constant_pi_minus_three::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return pi > >() - static_cast(3); } template template inline T constant_four_minus_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return static_cast(4) - pi > >(); } template template inline T constant_exp_minus_half::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return exp(static_cast(-0.5)); } template template inline T constant_exp_minus_one::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return exp(static_cast(-1.)); } template template inline T constant_one_div_root_two::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return static_cast(1) / root_two > >(); } template template inline T constant_one_div_root_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return static_cast(1) / root_pi > >(); } template template inline T constant_one_div_root_two_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return static_cast(1) / root_two_pi > >(); } template template inline T constant_root_one_div_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(static_cast(1) / pi > >()); } template template inline T constant_four_thirds_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() * static_cast(4) / static_cast(3); } template template inline T constant_half_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() / static_cast(2); } template template inline T constant_third_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() / static_cast(3); } template template inline T constant_sixth_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() / static_cast(6); } template template inline T constant_two_thirds_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() * static_cast(2) / static_cast(3); } template template inline T constant_three_quarters_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() * static_cast(3) / static_cast(4); } template template inline T constant_pi_pow_e::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pow(pi > >(), e > >()); // } template template inline T constant_pi_sqr::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() * pi > >() ; // } template template inline T constant_pi_sqr_div_six::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() * pi > >() / static_cast(6); // } template template inline T constant_pi_cubed::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() * pi > >() * pi > >() ; // } template template inline T constant_cbrt_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pow(pi > >(), static_cast(1)/ static_cast(3)); } template template inline T constant_one_div_cbrt_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(1) / pow(pi > >(), static_cast(1)/ static_cast(3)); } // Euler's e template template inline T constant_e_pow_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pow(e > >(), pi > >()); // } template template inline T constant_root_e::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sqrt(e > >()); } template template inline T constant_log10_e::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return log10(e > >()); } template template inline T constant_one_div_log10_e::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(1) / log10(e > >()); } // Trigonometric template template inline T constant_degree::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() / static_cast(180) ; // } template template inline T constant_radian::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(180) / pi > >() ; // } template template inline T constant_sin_one::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sin(static_cast(1)) ; // } template template inline T constant_cos_one::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return cos(static_cast(1)) ; // } template template inline T constant_sinh_one::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return sinh(static_cast(1)) ; // } template template inline T constant_cosh_one::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return cosh(static_cast(1)) ; // } template template inline T constant_phi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return (static_cast(1) + sqrt(static_cast(5)) )/static_cast(2) ; // } template template inline T constant_ln_phi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return log((static_cast(1) + sqrt(static_cast(5)) )/static_cast(2) ); } template template inline T constant_one_div_ln_phi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return static_cast(1) / log((static_cast(1) + sqrt(static_cast(5)) )/static_cast(2) ); } // Zeta template template inline T constant_zeta_two::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING return pi > >() * pi > >() /static_cast(6); } template template inline T constant_zeta_three::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // http://mathworld.wolfram.com/AperysConstant.html // http://en.wikipedia.org/wiki/Mathematical_constant // http://oeis.org/A002117/constant //T zeta3("1.20205690315959428539973816151144999076" // "4986292340498881792271555341838205786313" // "09018645587360933525814619915"); //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915" A002117 // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00); //"1.2020569031595942 double // http://www.spaennare.se/SSPROG/ssnum.pdf // section 11, Algorithm for Apery's constant zeta(3). // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50 // by Stefan Spannare September 19, 2007 // zeta(3) = 1/64 * sum BOOST_MATH_STD_USING T n_fact=static_cast(1); // build n! for n = 0. T sum = static_cast(77); // Start with n = 0 case. // for n = 0, (77/1) /64 = 1.203125 //double lim = std::numeric_limits::epsilon(); T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits())) : tools::epsilon(); for(unsigned int n = 1; n < 40; ++n) { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits. //cout << "n = " << n << endl; n_fact *= n; // n! T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10 T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77 // int nn = (2 * n + 1); // T d = factorial(nn); // inline factorial. T d = 1; for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1) { d *= i; } T den = d * d * d * d * d; // [(2n+1)!]^5 //cout << "den = " << den << endl; T term = num/den; if (n % 2 != 0) { //term *= -1; sum -= term; } else { sum += term; } //cout << "term = " << term << endl; //cout << "sum/64 = " << sum/64 << endl; if(abs(term) < lim) { break; } } return sum / 64; } template template inline T constant_catalan::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // http://oeis.org/A006752/constant //T c("0.915965594177219015054603514932384110774" //"149374281672134266498119621763019776254769479356512926115106248574"); // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01); // This is equation (entry) 31 from // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm // See also http://www.mpfr.org/algorithms.pdf BOOST_MATH_STD_USING T k_fact = 1; T tk_fact = 1; T sum = 1; T term; T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits())) : tools::epsilon(); for(unsigned k = 1;; ++k) { k_fact *= k; tk_fact *= (2 * k) * (2 * k - 1); term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1)); sum += term; if(term < lim) { break; } } return boost::math::constants::pi >() * log(2 + boost::math::constants::root_three >()) / 8 + 3 * sum / 8; } namespace khinchin_detail{ template T zeta_polynomial_series(T s, T sc, int digits) { BOOST_MATH_STD_USING // // This is algorithm 3 from: // // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein, // Canadian Mathematical Society, Conference Proceedings, 2000. // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf // BOOST_MATH_STD_USING int n = (digits * 19) / 53; T sum = 0; T two_n = ldexp(T(1), n); int ej_sign = 1; for(int j = 0; j < n; ++j) { sum += ej_sign * -two_n / pow(T(j + 1), s); ej_sign = -ej_sign; } T ej_sum = 1; T ej_term = 1; for(int j = n; j <= 2 * n - 1; ++j) { sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s); ej_sign = -ej_sign; ej_term *= 2 * n - j; ej_term /= j - n + 1; ej_sum += ej_term; } return -sum / (two_n * (1 - pow(T(2), sc))); } template T khinchin(int digits) { BOOST_MATH_STD_USING T sum = 0; T term; T lim = ldexp(T(1), 1-digits); T factor = 0; unsigned last_k = 1; T num = 1; for(unsigned n = 1;; ++n) { for(unsigned k = last_k; k <= 2 * n - 1; ++k) { factor += num / k; num = -num; } last_k = 2 * n; term = (zeta_polynomial_series(T(2 * n), T(1 - T(2 * n)), digits) - 1) * factor / n; sum += term; if(term < lim) break; } return exp(sum / boost::math::constants::ln_two >()); } } template template inline T constant_khinchin::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { int n = N ? (std::min)(N, tools::digits()) : tools::digits(); return khinchin_detail::khinchin(n); } template template inline T constant_extreme_value_skewness::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // N[12 Sqrt[6] Zeta[3]/Pi^3, 1101] BOOST_MATH_STD_USING T ev(12 * sqrt(static_cast(6)) * zeta_three > >() / pi_cubed > >() ); //T ev( //"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150" //"1894272048688553376986765366075828644841024041679714157616857834895702411080704529137366329462558680" //"2015498788776135705587959418756809080074611906006528647805347822929577145038743873949415294942796280" //"0895597703063466053535550338267721294164578901640163603544404938283861127819804918174973533694090594" //"3094963822672055237678432023017824416203652657301470473548274848068762500300316769691474974950757965" //"8640779777748741897542093874605477776538884083378029488863880220988107155275203245233994097178778984" //"3488995668362387892097897322246698071290011857605809901090220903955815127463328974447572119951192970" //"3684453635456559086126406960279692862247058250100678008419431185138019869693206366891639436908462809" //"9756051372711251054914491837034685476095423926553367264355374652153595857163724698198860485357368964" //"3807049634423621246870868566707915720704996296083373077647528285782964567312903914752617978405994377" //"9064157147206717895272199736902453130842229559980076472936976287378945035706933650987259357729800315"); return ev; } namespace detail{ // // Calculation of the Glaisher constant depends upon calculating the // derivative of the zeta function at 2, we can then use the relation: // zeta'(2) = 1/6 pi^2 [euler + ln(2pi)-12ln(A)] // To get the constant A. // See equation 45 at http://mathworld.wolfram.com/RiemannZetaFunction.html. // // The derivative of the zeta function is computed by direct differentiation // of the relation: // (1-2^(1-s))zeta(s) = SUM(n=0, INF){ (-n)^n / (n+1)^s } // Which gives us 2 slowly converging but alternating sums to compute, // for this we use Algorithm 1 from "Convergent Acceleration of Alternating Series", // Henri Cohen, Fernando Rodriguez Villegas and Don Zagier, Experimental Mathematics 9:1 (1999). // See http://www.math.utexas.edu/users/villegas/publications/conv-accel.pdf // template T zeta_series_derivative_2(unsigned digits) { // Derivative of the series part, evaluated at 2: BOOST_MATH_STD_USING int n = digits * 301 * 13 / 10000; T d = pow(3 + sqrt(T(8)), n); d = (d + 1 / d) / 2; T b = -1; T c = -d; T s = 0; for(int k = 0; k < n; ++k) { T a = -log(T(k+1)) / ((k+1) * (k+1)); c = b - c; s = s + c * a; b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1)); } return s / d; } template T zeta_series_2(unsigned digits) { // Series part of zeta at 2: BOOST_MATH_STD_USING int n = digits * 301 * 13 / 10000; T d = pow(3 + sqrt(T(8)), n); d = (d + 1 / d) / 2; T b = -1; T c = -d; T s = 0; for(int k = 0; k < n; ++k) { T a = T(1) / ((k + 1) * (k + 1)); c = b - c; s = s + c * a; b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1)); } return s / d; } template inline T zeta_series_lead_2() { // lead part at 2: return 2; } template inline T zeta_series_derivative_lead_2() { // derivative of lead part at 2: return -2 * boost::math::constants::ln_two(); } template inline T zeta_derivative_2(unsigned n) { // zeta derivative at 2: return zeta_series_derivative_2(n) * zeta_series_lead_2() + zeta_series_derivative_lead_2() * zeta_series_2(n); } } // namespace detail template template inline T constant_glaisher::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { BOOST_MATH_STD_USING typedef policies::policy > forwarding_policy; int n = N ? (std::min)(N, tools::digits()) : tools::digits(); T v = detail::zeta_derivative_2(n); v *= 6; v /= boost::math::constants::pi() * boost::math::constants::pi(); v -= boost::math::constants::euler(); v -= log(2 * boost::math::constants::pi()); v /= -12; return exp(v); /* // from http://mpmath.googlecode.com/svn/data/glaisher.txt // 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1)) // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12) // with Euler-Maclaurin summation for zeta'(2). T g( "1.282427129100622636875342568869791727767688927325001192063740021740406308858826" "46112973649195820237439420646120399000748933157791362775280404159072573861727522" "14334327143439787335067915257366856907876561146686449997784962754518174312394652" "76128213808180219264516851546143919901083573730703504903888123418813674978133050" "93770833682222494115874837348064399978830070125567001286994157705432053927585405" "81731588155481762970384743250467775147374600031616023046613296342991558095879293" "36343887288701988953460725233184702489001091776941712153569193674967261270398013" "52652668868978218897401729375840750167472114895288815996668743164513890306962645" "59870469543740253099606800842447417554061490189444139386196089129682173528798629" "88434220366989900606980888785849587494085307347117090132667567503310523405221054" "14176776156308191919997185237047761312315374135304725819814797451761027540834943" "14384965234139453373065832325673954957601692256427736926358821692159870775858274" "69575162841550648585890834128227556209547002918593263079373376942077522290940187"); return g; */ } template template inline T constant_rayleigh_skewness::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // 1100 digits of the Rayleigh distribution skewness // N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100] BOOST_MATH_STD_USING T rs(2 * root_pi > >() * pi_minus_three > >() / pow(four_minus_pi > >(), static_cast(3./2)) ); // 6.31110657818937138191899351544227779844042203134719497658094585692926819617473725459905027032537306794400047264, //"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067" //"9440004726436754739597525250317640394102954301685809920213808351450851396781817932734836994829371322" //"5797376021347531983451654130317032832308462278373358624120822253764532674177325950686466133508511968" //"2389168716630349407238090652663422922072397393006683401992961569208109477307776249225072042971818671" //"4058887072693437217879039875871765635655476241624825389439481561152126886932506682176611183750503553" //"1218982627032068396407180216351425758181396562859085306247387212297187006230007438534686340210168288" //"8956816965453815849613622117088096547521391672977226658826566757207615552041767516828171274858145957" //"6137539156656005855905288420585194082284972984285863898582313048515484073396332610565441264220790791" //"0194897267890422924599776483890102027823328602965235306539844007677157873140562950510028206251529523" //"7428049693650605954398446899724157486062545281504433364675815915402937209673727753199567661561209251" //"4695589950526053470201635372590001578503476490223746511106018091907936826431407434894024396366284848"); ; return rs; } template template inline T constant_rayleigh_kurtosis_excess::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2) // Might provide and calculate this using pi_minus_four. BOOST_MATH_STD_USING return - (((static_cast(6) * pi > >() * pi > >()) - (static_cast(24) * pi > >()) + static_cast(16) ) / ((pi > >() - static_cast(4)) * (pi > >() - static_cast(4))) ); } template template inline T constant_rayleigh_kurtosis::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2) // Might provide and calculate this using pi_minus_four. BOOST_MATH_STD_USING return static_cast(3) - (((static_cast(6) * pi > >() * pi > >()) - (static_cast(24) * pi > >()) + static_cast(16) ) / ((pi > >() - static_cast(4)) * (pi > >() - static_cast(4))) ); } template template inline T constant_log2_e::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return 1 / boost::math::constants::ln_two(); } template template inline T constant_quarter_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return boost::math::constants::pi() / 4; } template template inline T constant_one_div_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return 1 / boost::math::constants::pi(); } template template inline T constant_two_div_root_pi::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { return 2 * boost::math::constants::one_div_root_pi(); } #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900) template template inline T constant_first_feigenbaum::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // We know the constant to 1018 decimal digits. // See: http://www.plouffe.fr/simon/constants/feigenbaum.txt // Also: https://oeis.org/A006890 // N is in binary digits; so we multiply by log_2(10) static_assert(N < 3.321*1018, "\nThe first Feigenbaum constant cannot be computed at runtime; it is too expensive. It is known to 1018 decimal digits; you must request less than that."); T alpha{"4.6692016091029906718532038204662016172581855774757686327456513430041343302113147371386897440239480138171659848551898151344086271420279325223124429888908908599449354632367134115324817142199474556443658237932020095610583305754586176522220703854106467494942849814533917262005687556659523398756038256372256480040951071283890611844702775854285419801113440175002428585382498335715522052236087250291678860362674527213399057131606875345083433934446103706309452019115876972432273589838903794946257251289097948986768334611626889116563123474460575179539122045562472807095202198199094558581946136877445617396074115614074243754435499204869180982648652368438702799649017397793425134723808737136211601860128186102056381818354097598477964173900328936171432159878240789776614391395764037760537119096932066998361984288981837003229412030210655743295550388845849737034727532121925706958414074661841981961006129640161487712944415901405467941800198133253378592493365883070459999938375411726563553016862529032210862320550634510679399023341675"}; return alpha; } template template inline T constant_plastic::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { using std::cbrt; using std::sqrt; return (cbrt(9-sqrt(T(69))) + cbrt(9+sqrt(T(69))))/cbrt(T(18)); } template template inline T constant_gauss::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { using std::sqrt; T a = sqrt(T(2)); T g = 1; const T scale = sqrt(std::numeric_limits::epsilon())/512; while (a-g > scale*g) { T anp1 = (a + g)/2; g = sqrt(a*g); a = anp1; } return 2/(a + g); } template template inline T constant_dottie::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // Error analysis: cos(x(1+d)) - x(1+d) = -(sin(x)+1)xd; plug in x = 0.739 gives -1.236d; take d as half an ulp gives the termination criteria we want. using std::cos; using std::abs; using std::sin; T x{".739085133215160641655312087673873404013411758900757464965680635773284654883547594599376106931766531849801246"}; T residual = cos(x) - x; do { x += residual/(sin(x)+1); residual = cos(x) - x; } while(abs(residual) > std::numeric_limits::epsilon()); return x; } template template inline T constant_reciprocal_fibonacci::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // Wikipedia says Gosper has deviced a faster algorithm for this, but I read the linked paper and couldn't see it! // In any case, k bits per iteration is fine, though it would be better to sum from smallest to largest. // That said, the condition number is unity, so it should be fine. T x0 = 1; T x1 = 1; T sum = 2; T diff = 1; while (diff > std::numeric_limits::epsilon()) { T tmp = x1 + x0; diff = 1/tmp; sum += diff; x0 = x1; x1 = tmp; } return sum; } template template inline T constant_laplace_limit::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((std::integral_constant))) { // If x is the exact root, then the approximate root is given by x(1+delta). // Plugging this into the equation for the Laplace limit gives the residual of approximately // 2.6389delta. Take delta as half an epsilon and give some leeway so we don't get caught in an infinite loop, // gives a termination condition as 2eps. using std::abs; using std::exp; using std::sqrt; T x{"0.66274341934918158097474209710925290705623354911502241752039253499097185308651127724965480259895818168"}; T tmp = sqrt(1+x*x); T etmp = exp(tmp); T residual = x*exp(tmp) - 1 - tmp; T df = etmp -x/tmp + etmp*x*x/tmp; do { x -= residual/df; tmp = sqrt(1+x*x); etmp = exp(tmp); residual = x*exp(tmp) - 1 - tmp; df = etmp -x/tmp + etmp*x*x/tmp; } while(abs(residual) > 2*std::numeric_limits::epsilon()); return x; } #endif } } } } // namespaces #endif // BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED