// Copyright John Maddock 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_NTL_RR_HPP #define BOOST_MATH_NTL_RR_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost{ namespace math{ namespace ntl { class RR; RR ldexp(RR r, int exp); RR frexp(RR r, int* exp); class RR { public: // Constructors: RR() {} RR(const ::NTL::RR& c) : m_value(c){} RR(char c) { m_value = c; } RR(wchar_t c) { m_value = c; } RR(unsigned char c) { m_value = c; } RR(signed char c) { m_value = c; } RR(unsigned short c) { m_value = c; } RR(short c) { m_value = c; } RR(unsigned int c) { assign_large_int(c); } RR(int c) { assign_large_int(c); } RR(unsigned long c) { assign_large_int(c); } RR(long c) { assign_large_int(c); } RR(unsigned long long c) { assign_large_int(c); } RR(long long c) { assign_large_int(c); } RR(float c) { m_value = c; } RR(double c) { m_value = c; } RR(long double c) { assign_large_real(c); } // Assignment: RR& operator=(char c) { m_value = c; return *this; } RR& operator=(unsigned char c) { m_value = c; return *this; } RR& operator=(signed char c) { m_value = c; return *this; } RR& operator=(wchar_t c) { m_value = c; return *this; } RR& operator=(short c) { m_value = c; return *this; } RR& operator=(unsigned short c) { m_value = c; return *this; } RR& operator=(int c) { assign_large_int(c); return *this; } RR& operator=(unsigned int c) { assign_large_int(c); return *this; } RR& operator=(long c) { assign_large_int(c); return *this; } RR& operator=(unsigned long c) { assign_large_int(c); return *this; } RR& operator=(long long c) { assign_large_int(c); return *this; } RR& operator=(unsigned long long c) { assign_large_int(c); return *this; } RR& operator=(float c) { m_value = c; return *this; } RR& operator=(double c) { m_value = c; return *this; } RR& operator=(long double c) { assign_large_real(c); return *this; } // Access: NTL::RR& value(){ return m_value; } NTL::RR const& value()const{ return m_value; } // Member arithmetic: RR& operator+=(const RR& other) { m_value += other.value(); return *this; } RR& operator-=(const RR& other) { m_value -= other.value(); return *this; } RR& operator*=(const RR& other) { m_value *= other.value(); return *this; } RR& operator/=(const RR& other) { m_value /= other.value(); return *this; } RR operator-()const { return -m_value; } RR const& operator+()const { return *this; } // RR compatibility: const ::NTL::ZZ& mantissa() const { return m_value.mantissa(); } long exponent() const { return m_value.exponent(); } static void SetPrecision(long p) { ::NTL::RR::SetPrecision(p); } static long precision() { return ::NTL::RR::precision(); } static void SetOutputPrecision(long p) { ::NTL::RR::SetOutputPrecision(p); } static long OutputPrecision() { return ::NTL::RR::OutputPrecision(); } private: ::NTL::RR m_value; template void assign_large_real(const V& a) { using std::frexp; using std::ldexp; using std::floor; if (a == 0) { clear(m_value); return; } if (a == 1) { NTL::set(m_value); return; } if (!(boost::math::isfinite)(a)) { throw std::overflow_error("Cannot construct an instance of NTL::RR with an infinite value."); } int e; long double f, term; ::NTL::RR t; clear(m_value); f = frexp(a, &e); while(f) { // extract 30 bits from f: f = ldexp(f, 30); term = floor(f); e -= 30; conv(t.x, (int)term); t.e = e; m_value += t; f -= term; } } template void assign_large_int(V a) { #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable:4146) #endif clear(m_value); int exp = 0; NTL::RR t; bool neg = a < V(0) ? true : false; if(neg) a = -a; while(a) { t = static_cast(a & 0xffff); m_value += ldexp(RR(t), exp).value(); a >>= 16; exp += 16; } if(neg) m_value = -m_value; #ifdef _MSC_VER #pragma warning(pop) #endif } }; // Non-member arithmetic: inline RR operator+(const RR& a, const RR& b) { RR result(a); result += b; return result; } inline RR operator-(const RR& a, const RR& b) { RR result(a); result -= b; return result; } inline RR operator*(const RR& a, const RR& b) { RR result(a); result *= b; return result; } inline RR operator/(const RR& a, const RR& b) { RR result(a); result /= b; return result; } // Comparison: inline bool operator == (const RR& a, const RR& b) { return a.value() == b.value() ? true : false; } inline bool operator != (const RR& a, const RR& b) { return a.value() != b.value() ? true : false;} inline bool operator < (const RR& a, const RR& b) { return a.value() < b.value() ? true : false; } inline bool operator <= (const RR& a, const RR& b) { return a.value() <= b.value() ? true : false; } inline bool operator > (const RR& a, const RR& b) { return a.value() > b.value() ? true : false; } inline bool operator >= (const RR& a, const RR& b) { return a.value() >= b.value() ? true : false; } #if 0 // Non-member mixed compare: template inline bool operator == (const T& a, const RR& b) { return a == b.value(); } template inline bool operator != (const T& a, const RR& b) { return a != b.value(); } template inline bool operator < (const T& a, const RR& b) { return a < b.value(); } template inline bool operator > (const T& a, const RR& b) { return a > b.value(); } template inline bool operator <= (const T& a, const RR& b) { return a <= b.value(); } template inline bool operator >= (const T& a, const RR& b) { return a >= b.value(); } #endif // Non-member mixed compare: // Non-member functions: /* inline RR acos(RR a) { return ::NTL::acos(a.value()); } */ inline RR cos(RR a) { return ::NTL::cos(a.value()); } /* inline RR asin(RR a) { return ::NTL::asin(a.value()); } inline RR atan(RR a) { return ::NTL::atan(a.value()); } inline RR atan2(RR a, RR b) { return ::NTL::atan2(a.value(), b.value()); } */ inline RR ceil(RR a) { return ::NTL::ceil(a.value()); } /* inline RR fmod(RR a, RR b) { return ::NTL::fmod(a.value(), b.value()); } inline RR cosh(RR a) { return ::NTL::cosh(a.value()); } */ inline RR exp(RR a) { return ::NTL::exp(a.value()); } inline RR fabs(RR a) { return ::NTL::fabs(a.value()); } inline RR abs(RR a) { return ::NTL::abs(a.value()); } inline RR floor(RR a) { return ::NTL::floor(a.value()); } /* inline RR modf(RR a, RR* ipart) { ::NTL::RR ip; RR result = modf(a.value(), &ip); *ipart = ip; return result; } inline RR frexp(RR a, int* expon) { return ::NTL::frexp(a.value(), expon); } inline RR ldexp(RR a, int expon) { return ::NTL::ldexp(a.value(), expon); } */ inline RR log(RR a) { return ::NTL::log(a.value()); } inline RR log10(RR a) { return ::NTL::log10(a.value()); } /* inline RR tan(RR a) { return ::NTL::tan(a.value()); } */ inline RR pow(RR a, RR b) { return ::NTL::pow(a.value(), b.value()); } inline RR pow(RR a, int b) { return ::NTL::power(a.value(), b); } inline RR sin(RR a) { return ::NTL::sin(a.value()); } /* inline RR sinh(RR a) { return ::NTL::sinh(a.value()); } */ inline RR sqrt(RR a) { return ::NTL::sqrt(a.value()); } /* inline RR tanh(RR a) { return ::NTL::tanh(a.value()); } */ inline RR pow(const RR& r, long l) { return ::NTL::power(r.value(), l); } inline RR tan(const RR& a) { return sin(a)/cos(a); } inline RR frexp(RR r, int* exp) { *exp = r.value().e; r.value().e = 0; while(r >= 1) { *exp += 1; r.value().e -= 1; } while(r < 0.5) { *exp -= 1; r.value().e += 1; } BOOST_MATH_ASSERT(r < 1); BOOST_MATH_ASSERT(r >= 0.5); return r; } inline RR ldexp(RR r, int exp) { r.value().e += exp; return r; } // Streaming: template inline std::basic_ostream& operator<<(std::basic_ostream& os, const RR& a) { return os << a.value(); } template inline std::basic_istream& operator>>(std::basic_istream& is, RR& a) { ::NTL::RR v; is >> v; a = v; return is; } } // namespace ntl namespace lanczos{ struct ntl_lanczos { static ntl::RR lanczos_sum(const ntl::RR& z) { unsigned long p = ntl::RR::precision(); if(p <= 72) return lanczos13UDT::lanczos_sum(z); else if(p <= 120) return lanczos22UDT::lanczos_sum(z); else if(p <= 170) return lanczos31UDT::lanczos_sum(z); else //if(p <= 370) approx 100 digit precision: return lanczos61UDT::lanczos_sum(z); } static ntl::RR lanczos_sum_expG_scaled(const ntl::RR& z) { unsigned long p = ntl::RR::precision(); if(p <= 72) return lanczos13UDT::lanczos_sum_expG_scaled(z); else if(p <= 120) return lanczos22UDT::lanczos_sum_expG_scaled(z); else if(p <= 170) return lanczos31UDT::lanczos_sum_expG_scaled(z); else //if(p <= 370) approx 100 digit precision: return lanczos61UDT::lanczos_sum_expG_scaled(z); } static ntl::RR lanczos_sum_near_1(const ntl::RR& z) { unsigned long p = ntl::RR::precision(); if(p <= 72) return lanczos13UDT::lanczos_sum_near_1(z); else if(p <= 120) return lanczos22UDT::lanczos_sum_near_1(z); else if(p <= 170) return lanczos31UDT::lanczos_sum_near_1(z); else //if(p <= 370) approx 100 digit precision: return lanczos61UDT::lanczos_sum_near_1(z); } static ntl::RR lanczos_sum_near_2(const ntl::RR& z) { unsigned long p = ntl::RR::precision(); if(p <= 72) return lanczos13UDT::lanczos_sum_near_2(z); else if(p <= 120) return lanczos22UDT::lanczos_sum_near_2(z); else if(p <= 170) return lanczos31UDT::lanczos_sum_near_2(z); else //if(p <= 370) approx 100 digit precision: return lanczos61UDT::lanczos_sum_near_2(z); } static ntl::RR g() { unsigned long p = ntl::RR::precision(); if(p <= 72) return lanczos13UDT::g(); else if(p <= 120) return lanczos22UDT::g(); else if(p <= 170) return lanczos31UDT::g(); else //if(p <= 370) approx 100 digit precision: return lanczos61UDT::g(); } }; template struct lanczos { typedef ntl_lanczos type; }; } // namespace lanczos namespace tools { template<> inline int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) { return ::NTL::RR::precision(); } template <> inline float real_cast(boost::math::ntl::RR t) { double r; conv(r, t.value()); return static_cast(r); } template <> inline double real_cast(boost::math::ntl::RR t) { double r; conv(r, t.value()); return r; } namespace detail{ template void convert_to_long_result(NTL::RR const& r, I& result) { result = 0; I last_result(0); NTL::RR t(r); double term; do { conv(term, t); last_result = result; result += static_cast(term); t -= term; }while(result != last_result); } } template <> inline long double real_cast(boost::math::ntl::RR t) { long double result(0); detail::convert_to_long_result(t.value(), result); return result; } template <> inline boost::math::ntl::RR real_cast(boost::math::ntl::RR t) { return t; } template <> inline unsigned real_cast(boost::math::ntl::RR t) { unsigned result; detail::convert_to_long_result(t.value(), result); return result; } template <> inline int real_cast(boost::math::ntl::RR t) { int result; detail::convert_to_long_result(t.value(), result); return result; } template <> inline long real_cast(boost::math::ntl::RR t) { long result; detail::convert_to_long_result(t.value(), result); return result; } template <> inline long long real_cast(boost::math::ntl::RR t) { long long result; detail::convert_to_long_result(t.value(), result); return result; } template <> inline boost::math::ntl::RR max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) { static bool has_init = false; static NTL::RR val; if(!has_init) { val = 1; val.e = NTL_OVFBND-20; has_init = true; } return val; } template <> inline boost::math::ntl::RR min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) { static bool has_init = false; static NTL::RR val; if(!has_init) { val = 1; val.e = -NTL_OVFBND+20; has_init = true; } return val; } template <> inline boost::math::ntl::RR log_max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) { static bool has_init = false; static NTL::RR val; if(!has_init) { val = 1; val.e = NTL_OVFBND-20; val = log(val); has_init = true; } return val; } template <> inline boost::math::ntl::RR log_min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) { static bool has_init = false; static NTL::RR val; if(!has_init) { val = 1; val.e = -NTL_OVFBND+20; val = log(val); has_init = true; } return val; } template <> inline boost::math::ntl::RR epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) { return ldexp(boost::math::ntl::RR(1), 1-boost::math::policies::digits >()); } } // namespace tools // // The number of digits precision in RR can vary with each call // so we need to recalculate these with each call: // namespace constants{ template<> inline boost::math::ntl::RR pi(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) { NTL::RR result; ComputePi(result); return result; } template<> inline boost::math::ntl::RR e(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) { NTL::RR result; result = 1; return exp(result); } } // namespace constants namespace ntl{ // // These are some fairly brain-dead versions of the math // functions that NTL fails to provide. // // // Inverse trig functions: // struct asin_root { asin_root(RR const& target) : t(target){} boost::math::tuple operator()(RR const& p) { RR f0 = sin(p); RR f1 = cos(p); RR f2 = -f0; f0 -= t; return boost::math::make_tuple(f0, f1, f2); } private: RR t; }; inline RR asin(RR z) { double r; conv(r, z.value()); return boost::math::tools::halley_iterate( asin_root(z), RR(std::asin(r)), RR(-boost::math::constants::pi()/2), RR(boost::math::constants::pi()/2), NTL::RR::precision()); } struct acos_root { acos_root(RR const& target) : t(target){} boost::math::tuple operator()(RR const& p) { RR f0 = cos(p); RR f1 = -sin(p); RR f2 = -f0; f0 -= t; return boost::math::make_tuple(f0, f1, f2); } private: RR t; }; inline RR acos(RR z) { double r; conv(r, z.value()); return boost::math::tools::halley_iterate( acos_root(z), RR(std::acos(r)), RR(-boost::math::constants::pi()/2), RR(boost::math::constants::pi()/2), NTL::RR::precision()); } struct atan_root { atan_root(RR const& target) : t(target){} boost::math::tuple operator()(RR const& p) { RR c = cos(p); RR ta = tan(p); RR f0 = ta - t; RR f1 = 1 / (c * c); RR f2 = 2 * ta / (c * c); return boost::math::make_tuple(f0, f1, f2); } private: RR t; }; inline RR atan(RR z) { double r; conv(r, z.value()); return boost::math::tools::halley_iterate( atan_root(z), RR(std::atan(r)), -boost::math::constants::pi()/2, boost::math::constants::pi()/2, NTL::RR::precision()); } inline RR atan2(RR y, RR x) { if(x > 0) return atan(y / x); if(x < 0) { return y < 0 ? atan(y / x) - boost::math::constants::pi() : atan(y / x) + boost::math::constants::pi(); } return y < 0 ? -boost::math::constants::half_pi() : boost::math::constants::half_pi() ; } inline RR sinh(RR z) { return (expm1(z.value()) - expm1(-z.value())) / 2; } inline RR cosh(RR z) { return (exp(z) + exp(-z)) / 2; } inline RR tanh(RR z) { return sinh(z) / cosh(z); } inline RR fmod(RR x, RR y) { // This is a really crummy version of fmod, we rely on lots // of digits to get us out of trouble... RR factor = floor(x/y); return x - factor * y; } template inline int iround(RR const& x, const Policy& pol) { return tools::real_cast(round(x, pol)); } template inline long lround(RR const& x, const Policy& pol) { return tools::real_cast(round(x, pol)); } template inline long long llround(RR const& x, const Policy& pol) { return tools::real_cast(round(x, pol)); } template inline int itrunc(RR const& x, const Policy& pol) { return tools::real_cast(trunc(x, pol)); } template inline long ltrunc(RR const& x, const Policy& pol) { return tools::real_cast(trunc(x, pol)); } template inline long long lltrunc(RR const& x, const Policy& pol) { return tools::real_cast(trunc(x, pol)); } } // namespace ntl namespace detail{ template ntl::RR digamma_imp(ntl::RR x, const std::integral_constant* , const Policy& pol) { // // This handles reflection of negative arguments, and all our // error handling, then forwards to the T-specific approximation. // BOOST_MATH_STD_USING // ADL of std functions. ntl::RR result = 0; // // Check for negative arguments and use reflection: // if(x < 0) { // Reflect: x = 1 - x; // Argument reduction for tan: ntl::RR remainder = x - floor(x); // Shift to negative if > 0.5: if(remainder > 0.5) { remainder -= 1; } // // check for evaluation at a negative pole: // if(remainder == 0) { return policies::raise_pole_error("boost::math::digamma<%1%>(%1%)", nullptr, (1-x), pol); } result = constants::pi() / tan(constants::pi() * remainder); } result += big_digamma(x); return result; } } // namespace detail } // namespace math } // namespace boost #endif // BOOST_MATH_REAL_CONCEPT_HPP