// (C) Copyright Anton Bikineev 2014 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_TOOLS_RECURRENCE_HPP_ #define BOOST_MATH_TOOLS_RECURRENCE_HPP_ #include #include #include #include #include #include #include #include #include namespace boost { namespace math { namespace tools { namespace detail{ // // Function ratios directly from recurrence relations: // H. Shintan, Note on Miller's recurrence algorithm, J. Sci. Hiroshima Univ. Ser. A-I // Math., 29 (1965), pp. 121 - 133. // and: // COMPUTATIONAL ASPECTS OF THREE-TERM RECURRENCE RELATIONS // WALTER GAUTSCHI // SIAM REVIEW Vol. 9, No. 1, January, 1967 // template struct function_ratio_from_backwards_recurrence_fraction { typedef typename std::remove_reference(std::declval()(0)))>::type value_type; typedef std::pair result_type; function_ratio_from_backwards_recurrence_fraction(const Recurrence& r) : r(r), k(0) {} result_type operator()() { value_type a, b, c; std::tie(a, b, c) = r(k); ++k; // an and bn defined as per Gauchi 1.16, not the same // as the usual continued fraction a' and b's. value_type bn = a / c; value_type an = b / c; return result_type(-bn, an); } private: function_ratio_from_backwards_recurrence_fraction operator=(const function_ratio_from_backwards_recurrence_fraction&) = delete; Recurrence r; int k; }; template struct recurrence_reverser { recurrence_reverser(const R& r) : r(r) {} std::tuple operator()(int i) { using std::swap; std::tuple t = r(-i); swap(std::get<0>(t), std::get<2>(t)); return t; } R r; }; template struct recurrence_offsetter { typedef decltype(std::declval()(0)) result_type; recurrence_offsetter(Recurrence const& rr, int offset) : r(rr), k(offset) {} result_type operator()(int i) { return r(i + k); } private: Recurrence r; int k; }; } // namespace detail // // Given a stable backwards recurrence relation: // a f_n-1 + b f_n + c f_n+1 = 0 // returns the ratio f_n / f_n-1 // // Recurrence: a functor that returns a tuple of the factors (a,b,c). // factor: Convergence criteria, should be no less than machine epsilon. // max_iter: Maximum iterations to use solving the continued fraction. // template T function_ratio_from_backwards_recurrence(const Recurrence& r, const T& factor, std::uintmax_t& max_iter) { detail::function_ratio_from_backwards_recurrence_fraction f(r); return boost::math::tools::continued_fraction_a(f, factor, max_iter); } // // Given a stable forwards recurrence relation: // a f_n-1 + b f_n + c f_n+1 = 0 // returns the ratio f_n / f_n+1 // // Note that in most situations where this would be used, we're relying on // pseudo-convergence, as in most cases f_n will not be minimal as N -> -INF // as long as we reach convergence on the continued-fraction before f_n // switches behaviour, we should be fine. // // Recurrence: a functor that returns a tuple of the factors (a,b,c). // factor: Convergence criteria, should be no less than machine epsilon. // max_iter: Maximum iterations to use solving the continued fraction. // template T function_ratio_from_forwards_recurrence(const Recurrence& r, const T& factor, std::uintmax_t& max_iter) { boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction > f(r); return boost::math::tools::continued_fraction_a(f, factor, max_iter); } // solves usual recurrence relation for homogeneous // difference equation in stable forward direction // a(n)w(n-1) + b(n)w(n) + c(n)w(n+1) = 0 // // Params: // get_coefs: functor returning a tuple, where // get<0>() is a(n); get<1>() is b(n); get<2>() is c(n); // last_index: index N to be found; // first: w(-1); // second: w(0); // template inline T apply_recurrence_relation_forward(const NextCoefs& get_coefs, unsigned number_of_steps, T first, T second, long long* log_scaling = nullptr, T* previous = nullptr) { BOOST_MATH_STD_USING using std::tuple; using std::get; using std::swap; T third; T a, b, c; for (unsigned k = 0; k < number_of_steps; ++k) { tie(a, b, c) = get_coefs(k); if ((log_scaling) && ((fabs(tools::max_value() * (c / (a * 2048))) < fabs(first)) || (fabs(tools::max_value() * (c / (b * 2048))) < fabs(second)) || (fabs(tools::min_value() * (c * 2048 / a)) > fabs(first)) || (fabs(tools::min_value() * (c * 2048 / b)) > fabs(second)) )) { // Rescale everything: long long log_scale = lltrunc(log(fabs(second))); T scale = exp(T(-log_scale)); second *= scale; first *= scale; *log_scaling += log_scale; } // scale each part separately to avoid spurious overflow: third = (a / -c) * first + (b / -c) * second; BOOST_MATH_ASSERT((boost::math::isfinite)(third)); swap(first, second); swap(second, third); } if (previous) *previous = first; return second; } // solves usual recurrence relation for homogeneous // difference equation in stable backward direction // a(n)w(n-1) + b(n)w(n) + c(n)w(n+1) = 0 // // Params: // get_coefs: functor returning a tuple, where // get<0>() is a(n); get<1>() is b(n); get<2>() is c(n); // number_of_steps: index N to be found; // first: w(1); // second: w(0); // template inline T apply_recurrence_relation_backward(const NextCoefs& get_coefs, unsigned number_of_steps, T first, T second, long long* log_scaling = nullptr, T* previous = nullptr) { BOOST_MATH_STD_USING using std::tuple; using std::get; using std::swap; T next; T a, b, c; for (unsigned k = 0; k < number_of_steps; ++k) { tie(a, b, c) = get_coefs(-static_cast(k)); if ((log_scaling) && (second != 0) && ( (fabs(tools::max_value() * (a / b) / 2048) < fabs(second)) || (fabs(tools::max_value() * (a / c) / 2048) < fabs(first)) || (fabs(tools::min_value() * (a / b) * 2048) > fabs(second)) || (fabs(tools::min_value() * (a / c) * 2048) > fabs(first)) )) { // Rescale everything: int log_scale = itrunc(log(fabs(second))); T scale = exp(T(-log_scale)); second *= scale; first *= scale; *log_scaling += log_scale; } // scale each part separately to avoid spurious overflow: next = (b / -a) * second + (c / -a) * first; BOOST_MATH_ASSERT((boost::math::isfinite)(next)); swap(first, second); swap(second, next); } if (previous) *previous = first; return second; } template struct forward_recurrence_iterator { typedef typename std::remove_reference(std::declval()(0)))>::type value_type; forward_recurrence_iterator(const Recurrence& r, value_type f_n_minus_1, value_type f_n) : f_n_minus_1(f_n_minus_1), f_n(f_n), coef(r), k(0) {} forward_recurrence_iterator(const Recurrence& r, value_type f_n) : f_n(f_n), coef(r), k(0) { std::uintmax_t max_iter = boost::math::policies::get_max_series_iterations >(); f_n_minus_1 = f_n * boost::math::tools::function_ratio_from_forwards_recurrence(detail::recurrence_offsetter(r, -1), value_type(boost::math::tools::epsilon() * 2), max_iter); boost::math::policies::check_series_iterations("forward_recurrence_iterator<>::forward_recurrence_iterator", max_iter, boost::math::policies::policy<>()); } forward_recurrence_iterator& operator++() { using std::swap; value_type a, b, c; std::tie(a, b, c) = coef(k); value_type f_n_plus_1 = a * f_n_minus_1 / -c + b * f_n / -c; swap(f_n_minus_1, f_n); swap(f_n, f_n_plus_1); ++k; return *this; } forward_recurrence_iterator operator++(int) { forward_recurrence_iterator t(*this); ++(*this); return t; } value_type operator*() { return f_n; } value_type f_n_minus_1, f_n; Recurrence coef; int k; }; template struct backward_recurrence_iterator { typedef typename std::remove_reference(std::declval()(0)))>::type value_type; backward_recurrence_iterator(const Recurrence& r, value_type f_n_plus_1, value_type f_n) : f_n_plus_1(f_n_plus_1), f_n(f_n), coef(r), k(0) {} backward_recurrence_iterator(const Recurrence& r, value_type f_n) : f_n(f_n), coef(r), k(0) { std::uintmax_t max_iter = boost::math::policies::get_max_series_iterations >(); f_n_plus_1 = f_n * boost::math::tools::function_ratio_from_backwards_recurrence(detail::recurrence_offsetter(r, 1), value_type(boost::math::tools::epsilon() * 2), max_iter); boost::math::policies::check_series_iterations("backward_recurrence_iterator<>::backward_recurrence_iterator", max_iter, boost::math::policies::policy<>()); } backward_recurrence_iterator& operator++() { using std::swap; value_type a, b, c; std::tie(a, b, c) = coef(k); value_type f_n_minus_1 = c * f_n_plus_1 / -a + b * f_n / -a; swap(f_n_plus_1, f_n); swap(f_n, f_n_minus_1); --k; return *this; } backward_recurrence_iterator operator++(int) { backward_recurrence_iterator t(*this); ++(*this); return t; } value_type operator*() { return f_n; } value_type f_n_plus_1, f_n; Recurrence coef; int k; }; } } } // namespaces #endif // BOOST_MATH_TOOLS_RECURRENCE_HPP_