// Copyright Nick Thompson, 2017 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) /* * This class performs tanh-sinh quadrature on the real line. * Tanh-sinh quadrature is exponentially convergent for integrands in Hardy spaces, * (see https://en.wikipedia.org/wiki/Hardy_space for a formal definition), and is optimal for a random function from that class. * * The tanh-sinh quadrature is one of a class of so called "double exponential quadratures"-there is a large family of them, * but this one seems to be the most commonly used. * * As always, there are caveats: For instance, if the function you want to integrate is not holomorphic on the unit disk, * then the rapid convergence will be spoiled. In this case, a more appropriate quadrature is (say) Romberg, which does not * require the function to be holomorphic, only differentiable up to some order. * * In addition, if you are integrating a periodic function over a period, the trapezoidal rule is better. * * References: * * 1) Mori, Masatake. "Quadrature formulas obtained by variable transformation and the DE-rule." Journal of Computational and Applied Mathematics 12 (1985): 119-130. * 2) Bailey, David H., Karthik Jeyabalan, and Xiaoye S. Li. "A comparison of three high-precision quadrature schemes." Experimental Mathematics 14.3 (2005): 317-329. * 3) Press, William H., et al. "Numerical recipes third edition: the art of scientific computing." Cambridge University Press 32 (2007): 10013-2473. * */ #ifndef BOOST_MATH_QUADRATURE_TANH_SINH_HPP #define BOOST_MATH_QUADRATURE_TANH_SINH_HPP #include #include #include #include namespace boost{ namespace math{ namespace quadrature { template > class tanh_sinh { public: tanh_sinh(size_t max_refinements = 15, const Real& min_complement = tools::min_value() * 4) : m_imp(std::make_shared>(max_refinements, min_complement)) {} template auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval()(std::declval())) const; template auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval()(std::declval(), std::declval())) const; template auto integrate(const F f, Real tolerance = tools::root_epsilon(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval()(std::declval())) const; template auto integrate(const F f, Real tolerance = tools::root_epsilon(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval()(std::declval(), std::declval())) const; private: std::shared_ptr> m_imp; }; template template auto tanh_sinh::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval()(std::declval())) const { BOOST_MATH_STD_USING using boost::math::constants::half; using boost::math::quadrature::detail::tanh_sinh_detail; static const char* function = "tanh_sinh<%1%>::integrate"; typedef decltype(std::declval()(std::declval())) result_type; static_assert(!std::is_integral::value, "The return type cannot be integral, it must be either a real or complex floating point type."); if (!(boost::math::isnan)(a) && !(boost::math::isnan)(b)) { // Infinite limits: if ((a <= -tools::max_value()) && (b >= tools::max_value())) { auto u = [&](const Real& t, const Real& tc)->result_type { Real t_sq = t*t; Real inv; if (t > 0.5f) inv = 1 / ((2 - tc) * tc); else if(t < -0.5) inv = 1 / ((2 + tc) * -tc); else inv = 1 / (1 - t_sq); return f(t*inv)*(1 + t_sq)*inv*inv; }; Real limit = sqrt(tools::min_value()) * 4; return m_imp->integrate(u, error, L1, function, limit, limit, tolerance, levels); } // Right limit is infinite: if ((boost::math::isfinite)(a) && (b >= tools::max_value())) { auto u = [&](const Real& t, const Real& tc)->result_type { Real z, arg; if (t > -0.5f) z = 1 / (t + 1); else z = -1 / tc; if (t < 0.5) arg = 2 * z + a - 1; else arg = a + tc / (2 - tc); return f(arg)*z*z; }; Real left_limit = sqrt(tools::min_value()) * 4; result_type Q = Real(2) * m_imp->integrate(u, error, L1, function, left_limit, tools::min_value(), tolerance, levels); if (L1) { *L1 *= 2; } if (error) { *error *= 2; } return Q; } if ((boost::math::isfinite)(b) && (a <= -tools::max_value())) { auto v = [&](const Real& t, const Real& tc)->result_type { Real z; if (t > -0.5) z = 1 / (t + 1); else z = -1 / tc; Real arg; if (t < 0.5) arg = 2 * z - 1; else arg = tc / (2 - tc); return f(b - arg) * z * z; }; Real left_limit = sqrt(tools::min_value()) * 4; result_type Q = Real(2) * m_imp->integrate(v, error, L1, function, left_limit, tools::min_value(), tolerance, levels); if (L1) { *L1 *= 2; } if (error) { *error *= 2; } return Q; } if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b)) { if (a == b) { return result_type(0); } if (b < a) { return -this->integrate(f, b, a, tolerance, error, L1, levels); } Real avg = (a + b)*half(); Real diff = (b - a)*half(); Real avg_over_diff_m1 = a / diff; Real avg_over_diff_p1 = b / diff; bool have_small_left = fabs(a) < 0.5f; bool have_small_right = fabs(b) < 0.5f; Real left_min_complement = float_next(avg_over_diff_m1) - avg_over_diff_m1; Real min_complement_limit = (std::max)(tools::min_value(), Real(tools::min_value() / diff)); if (left_min_complement < min_complement_limit) left_min_complement = min_complement_limit; Real right_min_complement = avg_over_diff_p1 - float_prior(avg_over_diff_p1); if (right_min_complement < min_complement_limit) right_min_complement = min_complement_limit; // // These asserts will fail only if rounding errors on // type Real have accumulated so much error that it's // broken our internal logic. Should that prove to be // a persistent issue, we might need to add a bit of fudge // factor to move left_min_complement and right_min_complement // further from the end points of the range. // BOOST_MATH_ASSERT((left_min_complement * diff + a) > a); BOOST_MATH_ASSERT((b - right_min_complement * diff) < b); auto u = [&](Real z, Real zc)->result_type { Real position; if (z < -0.5) { if(have_small_left) return f(diff * (avg_over_diff_m1 - zc)); position = a - diff * zc; } else if (z > 0.5) { if(have_small_right) return f(diff * (avg_over_diff_p1 - zc)); position = b - diff * zc; } else position = avg + diff*z; BOOST_MATH_ASSERT(position != a); BOOST_MATH_ASSERT(position != b); return f(position); }; result_type Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels); if (L1) { *L1 *= diff; } if (error) { *error *= diff; } return Q; } } return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy()); } template template auto tanh_sinh::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval()(std::declval(), std::declval())) const { BOOST_MATH_STD_USING using boost::math::constants::half; using boost::math::quadrature::detail::tanh_sinh_detail; static const char* function = "tanh_sinh<%1%>::integrate"; if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b)) { if (b <= a) { return policies::raise_domain_error(function, "Arguments to integrate are in wrong order; integration over [a,b] must have b > a.", a, Policy()); } auto u = [&](Real z, Real zc)->Real { if (z < 0) return f((a - b) * zc / 2 + a, (b - a) * zc / 2); else return f((a - b) * zc / 2 + b, (b - a) * zc / 2); }; Real diff = (b - a)*half(); Real left_min_complement = tools::min_value() * 4; Real right_min_complement = tools::min_value() * 4; Real Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels); if (L1) { *L1 *= diff; } if (error) { *error *= diff; } return Q; } return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy()); } template template auto tanh_sinh::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval()(std::declval())) const { using boost::math::quadrature::detail::tanh_sinh_detail; static const char* function = "tanh_sinh<%1%>::integrate"; Real min_complement = tools::epsilon(); return m_imp->integrate([&](const Real& arg, const Real&) { return f(arg); }, error, L1, function, min_complement, min_complement, tolerance, levels); } template template auto tanh_sinh::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval()(std::declval(), std::declval())) const { using boost::math::quadrature::detail::tanh_sinh_detail; static const char* function = "tanh_sinh<%1%>::integrate"; Real min_complement = tools::min_value() * 4; return m_imp->integrate(f, error, L1, function, min_complement, min_complement, tolerance, levels); } } } } #endif