// Copyright John Maddock 2010. // Copyright Paul A. Bristow 2010. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP #define BOOST_STATS_INVERSE_GAUSSIAN_HPP #ifdef _MSC_VER #pragma warning(disable: 4512) // assignment operator could not be generated #endif // http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution // http://mathworld.wolfram.com/InverseGaussianDistribution.html // The normal-inverse Gaussian distribution // also called the Wald distribution (some sources limit this to when mean = 1). // It is the continuous probability distribution // that is defined as the normal variance-mean mixture where the mixing density is the // inverse Gaussian distribution. The tails of the distribution decrease more slowly // than the normal distribution. It is therefore suitable to model phenomena // where numerically large values are more probable than is the case for the normal distribution. // The Inverse Gaussian distribution was first studied in relationship to Brownian motion. // In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse // relationship between the time to cover a unit distance and distance covered in unit time. // Examples are returns from financial assets and turbulent wind speeds. // The normal-inverse Gaussian distributions form // a subclass of the generalised hyperbolic distributions. // See also // http://en.wikipedia.org/wiki/Normal_distribution // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm // Also: // Weisstein, Eric W. "Normal Distribution." // From MathWorld--A Wolfram Web Resource. // http://mathworld.wolfram.com/NormalDistribution.html // http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions. // ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/ // http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html // R package for dinverse_gaussian, ... // http://www.statsci.org/s/inverse_gaussian.s and http://www.statsci.org/s/inverse_gaussian.html //#include #include // for erf/erfc. #include #include #include #include // for gamma function #include #include #include namespace boost{ namespace math{ template > class inverse_gaussian_distribution { public: using value_type = RealType; using policy_type = Policy; explicit inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1) : m_mean(l_mean), m_scale(l_scale) { // Default is a 1,1 inverse_gaussian distribution. static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution"; RealType result; detail::check_scale(function, l_scale, &result, Policy()); detail::check_location(function, l_mean, &result, Policy()); detail::check_x_gt0(function, l_mean, &result, Policy()); } RealType mean()const { // alias for location. return m_mean; // aka mu } // Synonyms, provided to allow generic use of find_location and find_scale. RealType location()const { // location, aka mu. return m_mean; } RealType scale()const { // scale, aka lambda. return m_scale; } RealType shape()const { // shape, aka phi = lambda/mu. return m_scale / m_mean; } private: // // Data members: // RealType m_mean; // distribution mean or location, aka mu. RealType m_scale; // distribution standard deviation or scale, aka lambda. }; // class normal_distribution using inverse_gaussian = inverse_gaussian_distribution; #ifdef __cpp_deduction_guides template inverse_gaussian_distribution(RealType)->inverse_gaussian_distribution::type>; template inverse_gaussian_distribution(RealType,RealType)->inverse_gaussian_distribution::type>; #endif template inline std::pair range(const inverse_gaussian_distribution& /*dist*/) { // Range of permissible values for random variable x, zero to max. using boost::math::tools::max_value; return std::pair(static_cast(0.), max_value()); // - to + max value. } template inline std::pair support(const inverse_gaussian_distribution& /*dist*/) { // Range of supported values for random variable x, zero to max. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair(static_cast(0.), max_value()); // - to + max value. } template inline RealType pdf(const inverse_gaussian_distribution& dist, const RealType& x) { // Probability Density Function BOOST_MATH_STD_USING // for ADL of std functions RealType scale = dist.scale(); RealType mean = dist.mean(); RealType result = 0; static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)"; if(false == detail::check_scale(function, scale, &result, Policy())) { return result; } if(false == detail::check_location(function, mean, &result, Policy())) { return result; } if(false == detail::check_x_gt0(function, mean, &result, Policy())) { return result; } if(false == detail::check_positive_x(function, x, &result, Policy())) { return result; } if (x == 0) { return 0; // Convenient, even if not defined mathematically. } result = sqrt(scale / (constants::two_pi() * x * x * x)) * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean)); return result; } // pdf template inline RealType logpdf(const inverse_gaussian_distribution& dist, const RealType& x) { // Probability Density Function BOOST_MATH_STD_USING // for ADL of std functions RealType scale = dist.scale(); RealType mean = dist.mean(); RealType result = -std::numeric_limits::infinity(); static const char* function = "boost::math::logpdf(const inverse_gaussian_distribution<%1%>&, %1%)"; if(false == detail::check_scale(function, scale, &result, Policy())) { return result; } if(false == detail::check_location(function, mean, &result, Policy())) { return result; } if(false == detail::check_x_gt0(function, mean, &result, Policy())) { return result; } if(false == detail::check_positive_x(function, x, &result, Policy())) { return result; } if (x == 0) { return std::numeric_limits::quiet_NaN(); // Convenient, even if not defined mathematically. log(0) } const RealType two_pi = boost::math::constants::two_pi(); result = (-scale*pow(mean - x, RealType(2))/(mean*mean*x) + log(scale) - 3*log(x) - log(two_pi)) / 2; return result; } // pdf template inline RealType cdf(const inverse_gaussian_distribution& dist, const RealType& x) { // Cumulative Density Function. BOOST_MATH_STD_USING // for ADL of std functions. RealType scale = dist.scale(); RealType mean = dist.mean(); static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)"; RealType result = 0; if(false == detail::check_scale(function, scale, &result, Policy())) { return result; } if(false == detail::check_location(function, mean, &result, Policy())) { return result; } if (false == detail::check_x_gt0(function, mean, &result, Policy())) { return result; } if(false == detail::check_positive_x(function, x, &result, Policy())) { return result; } if (x == 0) { return 0; // Convenient, even if not defined mathematically. } // Problem with this formula for large scale > 1000 or small x // so use normal distribution version: // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution. normal_distribution n01; RealType n0 = sqrt(scale / x); n0 *= ((x / mean) -1); RealType n1 = cdf(n01, n0); RealType expfactor = exp(2 * scale / mean); RealType n3 = - sqrt(scale / x); n3 *= (x / mean) + 1; RealType n4 = cdf(n01, n3); result = n1 + expfactor * n4; return result; } // cdf template struct inverse_gaussian_quantile_functor { inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution dist, RealType const& p) : distribution(dist), prob(p) { } boost::math::tuple operator()(RealType const& x) { RealType c = cdf(distribution, x); RealType fx = c - prob; // Difference cdf - value - to minimize. RealType dx = pdf(distribution, x); // pdf is 1st derivative. // return both function evaluation difference f(x) and 1st derivative f'(x). return boost::math::make_tuple(fx, dx); } private: const boost::math::inverse_gaussian_distribution distribution; RealType prob; }; template struct inverse_gaussian_quantile_complement_functor { inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution dist, RealType const& p) : distribution(dist), prob(p) { } boost::math::tuple operator()(RealType const& x) { RealType c = cdf(complement(distribution, x)); RealType fx = c - prob; // Difference cdf - value - to minimize. RealType dx = -pdf(distribution, x); // pdf is 1st derivative. // return both function evaluation difference f(x) and 1st derivative f'(x). //return std::tr1::make_tuple(fx, dx); if available. return boost::math::make_tuple(fx, dx); } private: const boost::math::inverse_gaussian_distribution distribution; RealType prob; }; namespace detail { template inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1) { // guess at random variate value x for inverse gaussian quantile. BOOST_MATH_STD_USING using boost::math::policies::policy; // Error type. using boost::math::policies::overflow_error; // Action. using boost::math::policies::ignore_error; using no_overthrow_policy = policy>; RealType x; // result is guess at random variate value x. RealType phi = lambda / mu; if (phi > 2.) { // Big phi, so starting to look like normal Gaussian distribution. // // Whitmore, G.A. and Yalovsky, M. // A normalising logarithmic transformation for inverse Gaussian random variables, // Technometrics 20-2, 207-208 (1978), but using expression from // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6. normal_distribution n01; x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi)); } else { // phi < 2 so much less symmetrical with long tail, // so use gamma distribution as an approximation. using boost::math::gamma_distribution; // Define the distribution, using gamma_nooverflow: using gamma_nooverflow = gamma_distribution; gamma_nooverflow g(static_cast(0.5), static_cast(1.)); // R qgamma(0.2, 0.5, 1) = 0.0320923 RealType qg = quantile(complement(g, p)); x = lambda / (qg * 2); // if (x > mu/2) // x > mu /2? { // x too large for the gamma approximation to work well. //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807 RealType q = quantile(g, p); // x = mu * exp(q * static_cast(0.1)); // Said to improve at high p // x = mu * x; // Improves at high p? x = mu * exp(q / sqrt(phi) - 1/(2 * phi)); } } return x; } // guess_ig } // namespace detail template inline RealType quantile(const inverse_gaussian_distribution& dist, const RealType& p) { BOOST_MATH_STD_USING // for ADL of std functions. // No closed form exists so guess and use Newton Raphson iteration. RealType mean = dist.mean(); RealType scale = dist.scale(); static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)"; RealType result = 0; if(false == detail::check_scale(function, scale, &result, Policy())) return result; if(false == detail::check_location(function, mean, &result, Policy())) return result; if (false == detail::check_x_gt0(function, mean, &result, Policy())) return result; if(false == detail::check_probability(function, p, &result, Policy())) return result; if (p == 0) { return 0; // Convenient, even if not defined mathematically? } if (p == 1) { // overflow result = policies::raise_overflow_error(function, "probability parameter is 1, but must be < 1!", Policy()); return result; // infinity; } RealType guess = detail::guess_ig(p, dist.mean(), dist.scale()); using boost::math::tools::max_value; RealType min = 0.; // Minimum possible value is bottom of range of distribution. RealType max = max_value();// Maximum possible value is top of range. // int digits = std::numeric_limits::digits; // Maximum possible binary digits accuracy for type T. // digits used to control how accurate to try to make the result. // To allow user to control accuracy versus speed, int get_digits = policies::digits();// get digits from policy, std::uintmax_t m = policies::get_max_root_iterations(); // and max iterations. using boost::math::tools::newton_raphson_iterate; result = newton_raphson_iterate(inverse_gaussian_quantile_functor(dist, p), guess, min, max, get_digits, m); return result; } // quantile template inline RealType cdf(const complemented2_type, RealType>& c) { BOOST_MATH_STD_USING // for ADL of std functions. RealType scale = c.dist.scale(); RealType mean = c.dist.mean(); RealType x = c.param; static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)"; RealType result = 0; if(false == detail::check_scale(function, scale, &result, Policy())) return result; if(false == detail::check_location(function, mean, &result, Policy())) return result; if (false == detail::check_x_gt0(function, mean, &result, Policy())) return result; if(false == detail::check_positive_x(function, x, &result, Policy())) return result; normal_distribution n01; RealType n0 = sqrt(scale / x); n0 *= ((x / mean) -1); RealType cdf_1 = cdf(complement(n01, n0)); RealType expfactor = exp(2 * scale / mean); RealType n3 = - sqrt(scale / x); n3 *= (x / mean) + 1; //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign. RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1))); // RealType n4 = cdf(n01, n3); // = result = cdf_1 - expfactor * n6; return result; } // cdf complement template inline RealType quantile(const complemented2_type, RealType>& c) { BOOST_MATH_STD_USING // for ADL of std functions RealType scale = c.dist.scale(); RealType mean = c.dist.mean(); static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)"; RealType result = 0; if(false == detail::check_scale(function, scale, &result, Policy())) return result; if(false == detail::check_location(function, mean, &result, Policy())) return result; if (false == detail::check_x_gt0(function, mean, &result, Policy())) return result; RealType q = c.param; if(false == detail::check_probability(function, q, &result, Policy())) return result; RealType guess = detail::guess_ig(q, mean, scale); // Complement. using boost::math::tools::max_value; RealType min = 0.; // Minimum possible value is bottom of range of distribution. RealType max = max_value();// Maximum possible value is top of range. // int digits = std::numeric_limits::digits; // Maximum possible binary digits accuracy for type T. // digits used to control how accurate to try to make the result. int get_digits = policies::digits(); std::uintmax_t m = policies::get_max_root_iterations(); using boost::math::tools::newton_raphson_iterate; result = newton_raphson_iterate(inverse_gaussian_quantile_complement_functor(c.dist, q), guess, min, max, get_digits, m); return result; } // quantile template inline RealType mean(const inverse_gaussian_distribution& dist) { // aka mu return dist.mean(); } template inline RealType scale(const inverse_gaussian_distribution& dist) { // aka lambda return dist.scale(); } template inline RealType shape(const inverse_gaussian_distribution& dist) { // aka phi return dist.shape(); } template inline RealType standard_deviation(const inverse_gaussian_distribution& dist) { BOOST_MATH_STD_USING RealType scale = dist.scale(); RealType mean = dist.mean(); RealType result = sqrt(mean * mean * mean / scale); return result; } template inline RealType mode(const inverse_gaussian_distribution& dist) { BOOST_MATH_STD_USING RealType scale = dist.scale(); RealType mean = dist.mean(); RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale)) - 3 * mean / (2 * scale)); return result; } template inline RealType skewness(const inverse_gaussian_distribution& dist) { BOOST_MATH_STD_USING RealType scale = dist.scale(); RealType mean = dist.mean(); RealType result = 3 * sqrt(mean/scale); return result; } template inline RealType kurtosis(const inverse_gaussian_distribution& dist) { RealType scale = dist.scale(); RealType mean = dist.mean(); RealType result = 15 * mean / scale -3; return result; } template inline RealType kurtosis_excess(const inverse_gaussian_distribution& dist) { RealType scale = dist.scale(); RealType mean = dist.mean(); RealType result = 15 * mean / scale; return result; } } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP