--- title: "15-Peve-miRNA-lncRNA-PCC" author: "Kathleen Durkin" date: "2025-06-17" output: github_document: toc: true number_sections: true bookdown::html_document2: theme: cosmo toc: true toc_float: true number_sections: true code_folding: show code_download: true html_document: theme: cosmo toc: true toc_float: true number_sections: true code_folding: show code_download: true bibliography: references.bib link-citations: true --- This code will use Pearson's correlation coefficient to examine possible correlations between miRNA and lncRNA expression. This will then be compared to the miRanda interaction results of the miRNAs and lncRNAs. ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) #BiocManager::install("SPONGE") library(tidyverse) #library(mirTarRnaSeq) library(reshape2) #library(SPONGE) library(pheatmap) # library(energy) library(parallel) library(ggraph) library(tidygraph) library(igraph) library(genefilter) library(gridExtra) ``` Read in miRNA data ```{r} miRNA_counts <- read.delim("../output/03.1-Peve-sRNA-summary/Peve_miRNA_ShortStack_counts_formatted.txt") head(miRNA_counts) # Remove any miRNAs with 0 for all samples miRNA_counts <- miRNA_counts %>% mutate(Total = rowSums(.[, 1:3]))%>% filter(!Total==0)%>% dplyr::select(!Total) # Rename gene count cols to match miRNA count cols colnames(miRNA_counts) <- c("sample73", "sample79", "sample82") ``` Counts generated in `E-Peve/code/18-Peve-lncRNA-matrix`, available at https://raw.githubusercontent.com/urol-e5/deep-dive-expression/refs/heads/main/E-Peve/output/18-Peve-lncRNA-matrix/Peve-lncRNA-counts.txt ```{r} lncRNA_counts<-read_table(file="https://raw.githubusercontent.com/urol-e5/deep-dive-expression/refs/heads/main/E-Peve/output/18-Peve-lncRNA-matrix/Peve-lncRNA-counts.txt", skip=1) %>% rename("lncrna_id"=Geneid, "sample71"=`../data/18-Peve-lncRNA-matrix/RNA-POR-71.sorted.bam`, "sample73"=`../data/18-Peve-lncRNA-matrix/RNA-POR-73.sorted.bam`, "sample76"=`../data/18-Peve-lncRNA-matrix/RNA-POR-76.sorted.bam`, "sample79"=`../data/18-Peve-lncRNA-matrix/RNA-POR-79.sorted.bam`, "sample82"=`../data/18-Peve-lncRNA-matrix/RNA-POR-82.sorted.bam`) # Change to df lncRNA_counts_df <- as.data.frame(lncRNA_counts) %>% select(!c("Chr", "Start", "End", "Strand", "Length")) row.names(lncRNA_counts_df) <- lncRNA_counts_df[,1] lncRNA_counts_df <- lncRNA_counts_df[,-1] # remove the first column (gene names) if needed # Remove samples 71 and 76 (sRNA-seq failed, so we have no miRNA counts for those samples) lncRNA_counts_df <- lncRNA_counts_df %>% select(-sample71, -sample76) # Remove any lncRNAs with 0 for all samples lncRNA_counts_df <- lncRNA_counts_df %>% mutate(Total = rowSums(.[, 1:3]))%>% filter(!Total==0)%>% dplyr::select(!Total) ``` Normalize counts ```{r} # Function to normalize counts (simple RPM normalization) normalize_counts <- function(counts) { rpm <- t(t(counts) / colSums(counts)) * 1e6 return(rpm) } # Normalize miRNA and mRNA counts miRNA_norm <- normalize_counts(miRNA_counts) #miRNA_norm <- as.matrix(miRNA_counts_filt) lncRNA_norm <- normalize_counts(lncRNA_counts_df) #mRNA_norm <- as.matrix(mRNA_counts_filt) ``` Calculate PCC ```{r, eval=FALSE} # Function to calculate PCC and p-value for a pair of vectors calc_pcc <- function(x, y) { result <- cor.test(x, y, method = "pearson") return(c(PCC = result$estimate, p_value = result$p.value)) } # Create a data frame of all miRNA-lncRNA pairs pairs <- expand.grid(miRNA = rownames(miRNA_norm), lncRNA = rownames(lncRNA_norm)) # Calculate PCC and p-value for each pair pcc_results <- pairs %>% rowwise() %>% mutate( pcc_stats = list(calc_pcc(miRNA_norm[miRNA,], lncRNA_norm[lncRNA,])) ) %>% unnest_wider(pcc_stats) # Adjust p-values for FDR pcc_results <- pcc_results %>% mutate(adjusted_p_value = p.adjust(p_value, method = "fdr")) # filter to significant (p < 0.05) results pcc_results_sig <- pcc_results %>% filter(p_value < 0.05) #Save (to avoid needing to rerun the computationally-expensive PCC code) write.csv(pcc_results, "../output/15-Peve-miRNA-lncRNA-PCC/PCC_miRNA_lncRNA.csv") write.csv(pcc_results_sig, "../output/15-Peve-miRNA-lncRNA-PCC/PCC_sig_miRNA_lncRNA.csv") ``` Too large for Github, so available in large-file storage: `https://gannet.fish.washington.edu/kdurkin1/ravenbackups/deep-dive-expression/E-Peve/output/15-Peve-miRNA-lncRNA-PCC/PCC_miRNA_lncRNA.csv` `https://gannet.fish.washington.edu/kdurkin1/ravenbackups/deep-dive-expression/E-Peve/output/15-Peve-miRNA-lncRNA-PCC/PCC_sig_miRNA_lncRNA.csv` Load back in if necessary ```{r} pcc_results <- read.csv("https://gannet.fish.washington.edu/kdurkin1/ravenbackups/deep-dive-expression/E-Peve/output/15-Peve-miRNA-lncRNA-PCC/PCC_miRNA_lncRNA.csv") pcc_results_sig <- read.csv("https://gannet.fish.washington.edu/kdurkin1/ravenbackups/deep-dive-expression/E-Peve/output/15-Peve-miRNA-lncRNA-PCC/PCC_sig_miRNA_lncRNA.csv") ``` # Merge with miRanda Read in miranda data ```{r} miranda_peve <- read.delim("../output/14-Peve-miRNA-lncRNA-BLASTs-miRanda/Peve-miRanda-lncRNA-strict-parsed.txt", header = F) colnames(miranda_peve) <- c("miRNA", "lncRNA", "score", "energy", "query_start_end", "subject_start_end", "total_bp_shared", "query_similar", "subject_similar") ``` Format miranda miRNA and lncRNA names ```{r} # miRNA miranda_peve$miRNA <- sub("^>", "", miranda_peve$miRNA) # Remove leading ">" miranda_peve$miRNA <- sub("\\..*", "", miranda_peve$miRNA) # Remove everything from the first period onwards #miranda_peve$lncRNA <- sub(".*::", "", miranda_peve$lncRNA) # Remove everything before and including "::" miranda_peve$lncRNA <- sub("Peve_", "", miranda_peve$lncRNA) # Remove the "Peve_" prefix ``` ## Match lncRNA IDs to coordinates Now I need to be able to associate the lncRNA IDs used in the count matrix (e.g., lncRNA_1) with the genomic coordinates used in the fasta file and miRanda output. ```{r} # Build mapping table lncRNA_mapping <- data.frame( lncRNA_id = lncRNA_counts$lncrna_id, lncRNA_coord = paste0(lncRNA_counts$Chr, ":", lncRNA_counts$Start, "-", lncRNA_counts$End) ) # Save for future use write.table(lncRNA_mapping, "../output/15-Peve-miRNA-lncRNA-PCC/Peve_lncRNA_mapping.tab") ``` ## Merge Merge the miranda results with `lncRNA_mapping` to get the associated lncRNA ids with the transcript info ```{r} # miranda_peve_names <- left_join(miranda_peve, lncRNA_mapping, by = c("lncRNA" = "lncRNA_coord")) %>% # select(c(miRNA, lncRNA, score, energy, query_start_end, subject_start_end, total_bp_shared, query_similar, subject_similar, lncRNA_id)) %>% # unique() ``` Now we can merge with the PCC results! ```{r} pcc_miranda_peve <- left_join(miranda_peve, pcc_results, by = c("miRNA", "lncRNA")) %>% unique() # Write as csv write.csv(pcc_miranda_peve, "../output/15-Peve-miRNA-lncRNA-PCC/miranda_PCC_miRNA_lncRNA.csv") ``` **NOTE: "NA" values in the PCC columns indicates that one of the members of that miRNA-lncRNA pair had 0 counts in all samples (was completely unexpressed)** Inspect the data ```{r} # Read in data again if needed pcc_miranda_peve <- read.csv("../output/15-Peve-miRNA-lncRNA-PCC/miranda_PCC_miRNA_lncRNA.csv") length(unique(pcc_miranda_peve$miRNA)) length(unique(pcc_miranda_peve$lncRNA)) # Are there any pairs that have a PCC correlation > |0.5| and a p-value < 0.05? sig_pairs <- pcc_miranda_peve %>% filter(abs(PCC.cor) > 0.5 & p_value < 0.05) cat("PCC correlation > |0.5| and a p-value < 0.05:", nrow(sig_pairs), "\n") # Are there any pairs that have a PCC correlation > |0.5|, a p-value < 0.05, and a query similarity >75%? sig_pairs_similar <- pcc_miranda_peve %>% filter(abs(PCC.cor) > 0.5 & p_value < 0.05 & query_similar > 75.00) cat("PCC correlation > |0.5| and a p-value < 0.05 and query similarity >75%:", nrow(sig_pairs_similar), "\n") length(unique(sig_pairs_similar$miRNA)) length(unique(sig_pairs_similar$lncRNA)) ## Count positive and negative PCC.cor values positive_count <- sum(sig_pairs_similar$PCC.cor > 0) negative_count <- sum(sig_pairs_similar$PCC.cor < 0) cat("Number of rows with positive PCC.cor:", positive_count, "\n") cat("Number of rows with negative PCC.cor:", negative_count, "\n") ``` How many miRNAs per lncRNA and vice versa for the sig pairs? For sig pairs similar? ```{r} ## sig pairs lncRNAs_per_miRNA <- sig_pairs %>% group_by(miRNA) %>% summarize(n_lncRNAs = n_distinct(lncRNA)) %>% arrange(desc(n_lncRNAs)) print("lncRNAs per miRNA, significant. mean, range:") mean(lncRNAs_per_miRNA$n_lncRNAs) range(lncRNAs_per_miRNA$n_lncRNAs) cat("\n") miRNAs_per_lncRNA <- sig_pairs %>% group_by(lncRNA) %>% summarize(n_miRNAs = n_distinct(miRNA)) %>% arrange(desc(n_miRNAs)) print("miRNAs per lncRNA, significnat. mean, range:") mean(miRNAs_per_lncRNA$n_miRNAs) range(miRNAs_per_lncRNA$n_miRNAs) cat("\n") ## sig pairs similar lncRNAs_per_miRNA_sim <- sig_pairs_similar %>% group_by(miRNA) %>% summarize(n_lncRNAs = n_distinct(lncRNA)) %>% arrange(desc(n_lncRNAs)) print("lncRNAs per miRNA, significant and similar. mean, range:") mean(lncRNAs_per_miRNA_sim$n_lncRNAs) range(lncRNAs_per_miRNA_sim$n_lncRNAs) cat("\n") miRNAs_per_lncRNA_sim <- sig_pairs_similar %>% group_by(lncRNA) %>% summarize(n_miRNAs = n_distinct(miRNA)) %>% arrange(desc(n_miRNAs)) print("miRNAs per lncRNA, significnat and similar. mean, range:") mean(miRNAs_per_lncRNA_sim$n_miRNAs) range(miRNAs_per_lncRNA_sim$n_miRNAs) ``` For the significant pairs, the miRNAs can interact with 1-33 unique lncRNAs, while the lncRNAs can interact with with 1-4 unique miRNAs. For the significant pairs that have high query similarity, the miRNAs can interact with 1-11 unique lncRNAs, while the lncRNAs can interact with 1 unique miRNAs. Interesting! Plot as a network plot with the miRNAs as the primary nodes for `sig_pairs` ```{r} # Create the graph g <- graph_from_data_frame(sig_pairs, directed = FALSE) # Add edge attributes E(g)$weight <- abs(E(g)$PCC.cor) # Use absolute PCC for edge weight E(g)$color <- ifelse(E(g)$PCC.cor > 0, "blue", "red") # Blue for positive, red for negative correlations # Add node attributes V(g)$type <- ifelse(V(g)$name %in% sig_pairs$miRNA, "miRNA", "lncRNA") # Convert to tbl_graph for ggraph g_tbl <- as_tbl_graph(g) # Create the plot p <- ggraph(g_tbl, layout = "auto") + geom_edge_link(aes(edge_width = weight, color = color), alpha = 0.6) + geom_node_point(aes(color = type), size = 5) + #geom_node_text(aes(label = name), repel = TRUE, size = 3) + scale_edge_width(range = c(0.5, 3)) + scale_color_manual(values = c("miRNA" = "lightblue", "lncRNA" = "lightgreen", "Positive correlation" = "blue", "Negative correlation" = "red")) + theme_graph() + labs(title = "miRNA-lncRNA Interaction Network", subtitle = "Edge width represents |PCC|, color represents correlation direction");p ggsave("../output/15-Peve-miRNA-lncRNA-PCC/peve-significant_miRNA_lncRNA_network.png", p, width = 20, height = 15, dpi = 300) ``` Plot as a network plot with the miRNAs as the primary nodes for `sig_pairs_similar` ```{r} # Create the graph g <- graph_from_data_frame(sig_pairs_similar, directed = FALSE) # Add edge attributes E(g)$weight <- abs(E(g)$PCC.cor) # Use absolute PCC for edge weight E(g)$color <- ifelse(E(g)$PCC.cor > 0, "blue", "red") # Blue for positive, red for negative correlations # Add node attributes V(g)$type <- ifelse(V(g)$name %in% sig_pairs_similar$miRNA, "miRNA", "lncRNA") # Convert to tbl_graph for ggraph g_tbl <- as_tbl_graph(g) # Create the plot p <- ggraph(g_tbl, layout = "fr") + geom_edge_link(aes(edge_width = weight, color = color), alpha = 0.6) + geom_node_point(aes(color = type), size = 5) + #geom_node_text(aes(label = name), repel = TRUE, size = 3) + scale_edge_width(range = c(0.5, 3)) + scale_color_manual(values = c("miRNA" = "lightblue", "lncRNA" = "lightgreen", "Positive correlation" = "blue", "Negative correlation" = "red")) + theme_graph() + labs(title = "miRNA-lncRNA Interaction Network", subtitle = "Edge width represents |PCC|, color represents correlation direction");p ggsave("../output/15-Peve-miRNA-lncRNA-PCC/peve-similar_significant_miRNA_lncRNA_network.png", p, width = 20, height = 15, dpi = 300) ```