example(uniroot.all) example(gradient) # Demonstration of how the banded and full jacobian look like... mod <- function (t=0,y=c(1,2,3,4), parms=NULL,...) { dy1<-y[1] + 2*y[2] dy2<-3*y[1] + 4*y[2] + 5*y[3] dy3<-6*y[2] + 7*y[3] + 8*y[4] dy4<-9*y[3] + 10*y[4] return(as.list(c(dy1,dy2,dy3,dy4))) } jacobian.band(y=c(1,2,3,4),func=mod) jacobian.full(y=c(1,2,3,4),func=mod) # Boundary value problem - see also the vignette bvp22 <- function (y, xi) { dy2 <- diff(diff(c(ya,y,yb))/dx)/dx dy <- 0.5*(diff(c(ya,y))/dx+diff(c(y,yb))/dx) return(xi*dy2+dy+y^2) } dx <- 0.001 x <- seq(0,1,by=dx) N <- length(x) ya <- 0 yb <- 0.5 print(system.time( Y1<- multiroot.1D(f=bvp22, start=runif(N), nspec=1, xi=0.1) )*1000) Y2<- multiroot.1D(f=bvp22, start=runif(N), nspec=1, xi=0.05) Y3<- multiroot.1D(f=bvp22, start=runif(N), nspec=1, xi=0.01) plot(x,Y3$root, type="l", col="green", lwd=2, main="bvp test problem 22" ,ylab="y") lines(x,Y2$root, col="red", lwd=2) lines(x,Y1$root, col="blue", lwd=2)