// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup op_mean //! @{ template<typename T1> inline void op_mean::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_mean>& in) { arma_debug_sigprint(); typedef typename T1::elem_type eT; const uword dim = in.aux_uword_a; arma_conform_check( (dim > 1), "mean(): parameter 'dim' must be 0 or 1" ); const Proxy<T1> P(in.m); if(P.is_alias(out) == false) { op_mean::apply_noalias(out, P, dim); } else { Mat<eT> tmp; op_mean::apply_noalias(tmp, P, dim); out.steal_mem(tmp); } } template<typename T1> inline void op_mean::apply_noalias(Mat<typename T1::elem_type>& out, const Proxy<T1>& P, const uword dim) { arma_debug_sigprint(); if(is_Mat<typename Proxy<T1>::stored_type>::value) { op_mean::apply_noalias_unwrap(out, P, dim); } else { op_mean::apply_noalias_proxy(out, P, dim); } } template<typename T1> inline void op_mean::apply_noalias_unwrap(Mat<typename T1::elem_type>& out, const Proxy<T1>& P, const uword dim) { arma_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename get_pod_type<eT>::result T; typedef typename Proxy<T1>::stored_type P_stored_type; const unwrap<P_stored_type> tmp(P.Q); const typename unwrap<P_stored_type>::stored_type& X = tmp.M; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; if(dim == 0) { out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols); if(X_n_rows == 0) { return; } eT* out_mem = out.memptr(); for(uword col=0; col < X_n_cols; ++col) { out_mem[col] = op_mean::direct_mean( X.colptr(col), X_n_rows ); } } else if(dim == 1) { out.zeros(X_n_rows, (X_n_cols > 0) ? 1 : 0); if(X_n_cols == 0) { return; } eT* out_mem = out.memptr(); for(uword col=0; col < X_n_cols; ++col) { const eT* col_mem = X.colptr(col); for(uword row=0; row < X_n_rows; ++row) { out_mem[row] += col_mem[row]; } } out /= T(X_n_cols); for(uword row=0; row < X_n_rows; ++row) { if(arma_isfinite(out_mem[row]) == false) { out_mem[row] = op_mean::direct_mean_robust( X, row ); } } } } template<typename T1> inline void op_mean::apply_noalias_proxy(Mat<typename T1::elem_type>& out, const Proxy<T1>& P, const uword dim) { arma_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename get_pod_type<eT>::result T; const uword P_n_rows = P.get_n_rows(); const uword P_n_cols = P.get_n_cols(); if(dim == 0) { out.set_size((P_n_rows > 0) ? 1 : 0, P_n_cols); if(P_n_rows == 0) { return; } eT* out_mem = out.memptr(); for(uword col=0; col < P_n_cols; ++col) { eT val1 = eT(0); eT val2 = eT(0); uword i,j; for(i=0, j=1; j < P_n_rows; i+=2, j+=2) { val1 += P.at(i,col); val2 += P.at(j,col); } if(i < P_n_rows) { val1 += P.at(i,col); } out_mem[col] = (val1 + val2) / T(P_n_rows); } } else if(dim == 1) { out.zeros(P_n_rows, (P_n_cols > 0) ? 1 : 0); if(P_n_cols == 0) { return; } eT* out_mem = out.memptr(); for(uword col=0; col < P_n_cols; ++col) for(uword row=0; row < P_n_rows; ++row) { out_mem[row] += P.at(row,col); } out /= T(P_n_cols); } if(out.internal_has_nonfinite()) { // TODO: replace with dedicated handling to avoid unwrapping op_mean::apply_noalias_unwrap(out, P, dim); } } // // cubes template<typename T1> inline void op_mean::apply(Cube<typename T1::elem_type>& out, const OpCube<T1,op_mean>& in) { arma_debug_sigprint(); typedef typename T1::elem_type eT; const uword dim = in.aux_uword_a; arma_conform_check( (dim > 2), "mean(): parameter 'dim' must be 0 or 1 or 2" ); const ProxyCube<T1> P(in.m); if(P.is_alias(out) == false) { op_mean::apply_noalias(out, P, dim); } else { Cube<eT> tmp; op_mean::apply_noalias(tmp, P, dim); out.steal_mem(tmp); } } template<typename T1> inline void op_mean::apply_noalias(Cube<typename T1::elem_type>& out, const ProxyCube<T1>& P, const uword dim) { arma_debug_sigprint(); if(is_Cube<typename ProxyCube<T1>::stored_type>::value) { op_mean::apply_noalias_unwrap(out, P, dim); } else { op_mean::apply_noalias_proxy(out, P, dim); } } template<typename T1> inline void op_mean::apply_noalias_unwrap(Cube<typename T1::elem_type>& out, const ProxyCube<T1>& P, const uword dim) { arma_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename get_pod_type<eT>::result T; typedef typename ProxyCube<T1>::stored_type P_stored_type; const unwrap_cube<P_stored_type> U(P.Q); const Cube<eT>& X = U.M; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; const uword X_n_slices = X.n_slices; if(dim == 0) { out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols, X_n_slices); if(X_n_rows == 0) { return; } for(uword slice=0; slice < X_n_slices; ++slice) { eT* out_mem = out.slice_memptr(slice); for(uword col=0; col < X_n_cols; ++col) { out_mem[col] = op_mean::direct_mean( X.slice_colptr(slice,col), X_n_rows ); } } } else if(dim == 1) { out.zeros(X_n_rows, (X_n_cols > 0) ? 1 : 0, X_n_slices); if(X_n_cols == 0) { return; } for(uword slice=0; slice < X_n_slices; ++slice) { eT* out_mem = out.slice_memptr(slice); for(uword col=0; col < X_n_cols; ++col) { const eT* col_mem = X.slice_colptr(slice,col); for(uword row=0; row < X_n_rows; ++row) { out_mem[row] += col_mem[row]; } } const Mat<eT> tmp('j', X.slice_memptr(slice), X_n_rows, X_n_cols); for(uword row=0; row < X_n_rows; ++row) { out_mem[row] /= T(X_n_cols); if(arma_isfinite(out_mem[row]) == false) { out_mem[row] = op_mean::direct_mean_robust( tmp, row ); } } } } else if(dim == 2) { out.zeros(X_n_rows, X_n_cols, (X_n_slices > 0) ? 1 : 0); if(X_n_slices == 0) { return; } eT* out_mem = out.memptr(); for(uword slice=0; slice < X_n_slices; ++slice) { arrayops::inplace_plus(out_mem, X.slice_memptr(slice), X.n_elem_slice ); } out /= T(X_n_slices); podarray<eT> tmp(X_n_slices); for(uword col=0; col < X_n_cols; ++col) for(uword row=0; row < X_n_rows; ++row) { if(arma_isfinite(out.at(row,col,0)) == false) { for(uword slice=0; slice < X_n_slices; ++slice) { tmp[slice] = X.at(row,col,slice); } out.at(row,col,0) = op_mean::direct_mean_robust(tmp.memptr(), X_n_slices); } } } } template<typename T1> inline void op_mean::apply_noalias_proxy(Cube<typename T1::elem_type>& out, const ProxyCube<T1>& P, const uword dim) { arma_debug_sigprint(); op_mean::apply_noalias_unwrap(out, P, dim); // TODO: implement specialised handling } // template<typename eT> inline eT op_mean::direct_mean(const eT* const X, const uword n_elem) { arma_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const eT result = arrayops::accumulate(X, n_elem) / T(n_elem); return arma_isfinite(result) ? result : op_mean::direct_mean_robust(X, n_elem); } template<typename eT> inline eT op_mean::direct_mean_robust(const eT* const X, const uword n_elem) { arma_debug_sigprint(); // use an adapted form of the mean finding algorithm from the running_stat class typedef typename get_pod_type<eT>::result T; uword i,j; eT r_mean = eT(0); for(i=0, j=1; j<n_elem; i+=2, j+=2) { const eT Xi = X[i]; const eT Xj = X[j]; r_mean = r_mean + (Xi - r_mean)/T(j); // we need i+1, and j is equivalent to i+1 here r_mean = r_mean + (Xj - r_mean)/T(j+1); } if(i < n_elem) { const eT Xi = X[i]; r_mean = r_mean + (Xi - r_mean)/T(i+1); } return r_mean; } template<typename eT> inline eT op_mean::direct_mean(const Mat<eT>& X, const uword row) { arma_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_cols = X.n_cols; eT val = eT(0); uword i,j; for(i=0, j=1; j < X_n_cols; i+=2, j+=2) { val += X.at(row,i); val += X.at(row,j); } if(i < X_n_cols) { val += X.at(row,i); } const eT result = val / T(X_n_cols); return arma_isfinite(result) ? result : op_mean::direct_mean_robust(X, row); } template<typename eT> inline eT op_mean::direct_mean_robust(const Mat<eT>& X, const uword row) { arma_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_cols = X.n_cols; eT r_mean = eT(0); for(uword col=0; col < X_n_cols; ++col) { r_mean = r_mean + (X.at(row,col) - r_mean)/T(col+1); } return r_mean; } template<typename eT> inline eT op_mean::mean_all(const subview<eT>& X) { arma_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; const uword X_n_elem = X.n_elem; if(X_n_elem == 0) { arma_conform_check(true, "mean(): object has no elements"); return Datum<eT>::nan; } eT val = eT(0); if(X_n_rows == 1) { const Mat<eT>& A = X.m; const uword start_row = X.aux_row1; const uword start_col = X.aux_col1; const uword end_col_p1 = start_col + X_n_cols; uword i,j; for(i=start_col, j=start_col+1; j < end_col_p1; i+=2, j+=2) { val += A.at(start_row, i); val += A.at(start_row, j); } if(i < end_col_p1) { val += A.at(start_row, i); } } else { for(uword col=0; col < X_n_cols; ++col) { val += arrayops::accumulate(X.colptr(col), X_n_rows); } } const eT result = val / T(X_n_elem); return arma_isfinite(result) ? result : op_mean::mean_all_robust(X); } template<typename eT> inline eT op_mean::mean_all_robust(const subview<eT>& X) { arma_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; const uword start_row = X.aux_row1; const uword start_col = X.aux_col1; const uword end_row_p1 = start_row + X_n_rows; const uword end_col_p1 = start_col + X_n_cols; const Mat<eT>& A = X.m; eT r_mean = eT(0); if(X_n_rows == 1) { uword i=0; for(uword col = start_col; col < end_col_p1; ++col, ++i) { r_mean = r_mean + (A.at(start_row,col) - r_mean)/T(i+1); } } else { uword i=0; for(uword col = start_col; col < end_col_p1; ++col) for(uword row = start_row; row < end_row_p1; ++row, ++i) { r_mean = r_mean + (A.at(row,col) - r_mean)/T(i+1); } } return r_mean; } template<typename eT> inline eT op_mean::mean_all(const diagview<eT>& X) { arma_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_elem = X.n_elem; if(X_n_elem == 0) { arma_conform_check(true, "mean(): object has no elements"); return Datum<eT>::nan; } eT val = eT(0); for(uword i=0; i<X_n_elem; ++i) { val += X[i]; } const eT result = val / T(X_n_elem); return arma_isfinite(result) ? result : op_mean::mean_all_robust(X); } template<typename eT> inline eT op_mean::mean_all_robust(const diagview<eT>& X) { arma_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_elem = X.n_elem; eT r_mean = eT(0); for(uword i=0; i<X_n_elem; ++i) { r_mean = r_mean + (X[i] - r_mean)/T(i+1); } return r_mean; } template<typename T1> inline typename T1::elem_type op_mean::mean_all(const Op<T1,op_vectorise_col>& X) { arma_debug_sigprint(); return op_mean::mean_all(X.m); } template<typename T1> inline typename T1::elem_type op_mean::mean_all(const Base<typename T1::elem_type, T1>& X) { arma_debug_sigprint(); typedef typename T1::elem_type eT; const quasi_unwrap<T1> tmp(X.get_ref()); const Mat<eT>& A = tmp.M; const uword A_n_elem = A.n_elem; if(A_n_elem == 0) { arma_conform_check(true, "mean(): object has no elements"); return Datum<eT>::nan; } return op_mean::direct_mean(A.memptr(), A_n_elem); } template<typename eT> arma_inline eT op_mean::robust_mean(const eT A, const eT B) { return A + (B - A)/eT(2); } template<typename T> arma_inline std::complex<T> op_mean::robust_mean(const std::complex<T>& A, const std::complex<T>& B) { return A + (B - A)/T(2); } //! @}