// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup op_det //! @{ template<typename T1> inline bool op_det::apply_direct(typename T1::elem_type& out_val, const Base<typename T1::elem_type,T1>& expr) { arma_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename T1::pod_type T; if(strip_diagmat<T1>::do_diagmat) { const strip_diagmat<T1> strip(expr.get_ref()); out_val = op_det::apply_diagmat(strip.M); return true; } if(strip_trimat<T1>::do_trimat) { const strip_trimat<T1> strip(expr.get_ref()); out_val = op_det::apply_trimat(strip.M); return true; } Mat<eT> A(expr.get_ref()); arma_conform_check( (A.is_square() == false), "det(): given matrix must be square sized" ); const uword N = A.n_rows; if(N == 0) { out_val = eT(1); return true; } if(N == 1) { out_val = A[0]; return true; } if((is_cx<eT>::no) && (N <= 3)) { constexpr T det_min = std::numeric_limits<T>::epsilon(); constexpr T det_max = T(1) / std::numeric_limits<T>::epsilon(); eT det_val = eT(0); if(N == 2) { det_val = op_det::apply_tiny_2x2(A); } if(N == 3) { det_val = op_det::apply_tiny_3x3(A); } const T abs_det_val = std::abs(det_val); if((abs_det_val > det_min) && (abs_det_val < det_max)) { out_val = det_val; return true; } // fallthrough if det_val is suspect } if(A.is_diagmat()) { out_val = op_det::apply_diagmat(A); return true; } const bool is_triu = trimat_helper::is_triu(A); const bool is_tril = is_triu ? false : trimat_helper::is_tril(A); if(is_triu || is_tril) { out_val = op_det::apply_trimat(A); return true; } return auxlib::det(out_val, A); } template<typename T1> inline typename T1::elem_type op_det::apply_diagmat(const Base<typename T1::elem_type,T1>& expr) { arma_debug_sigprint(); typedef typename T1::elem_type eT; const diagmat_proxy<T1> A(expr.get_ref()); arma_conform_check( (A.n_rows != A.n_cols), "det(): given matrix must be square sized" ); const uword N = (std::min)(A.n_rows, A.n_cols); eT val = eT(1); for(uword i=0; i<N; ++i) { val *= A[i]; } return val; } template<typename T1> inline typename T1::elem_type op_det::apply_trimat(const Base<typename T1::elem_type,T1>& expr) { arma_debug_sigprint(); typedef typename T1::elem_type eT; const Proxy<T1> P(expr.get_ref()); const uword N = P.get_n_rows(); arma_conform_check( (N != P.get_n_cols()), "det(): given matrix must be square sized" ); eT val = eT(1); for(uword i=0; i<N; ++i) { val *= P.at(i,i); } return val; } template<typename eT> inline eT op_det::apply_tiny_2x2(const Mat<eT>& X) { arma_debug_sigprint(); const eT* Xm = X.memptr(); return ( Xm[pos<0,0>::n2]*Xm[pos<1,1>::n2] - Xm[pos<0,1>::n2]*Xm[pos<1,0>::n2] ); } template<typename eT> inline eT op_det::apply_tiny_3x3(const Mat<eT>& X) { arma_debug_sigprint(); const eT* Xm = X.memptr(); // const double tmp1 = X.at(0,0) * X.at(1,1) * X.at(2,2); // const double tmp2 = X.at(0,1) * X.at(1,2) * X.at(2,0); // const double tmp3 = X.at(0,2) * X.at(1,0) * X.at(2,1); // const double tmp4 = X.at(2,0) * X.at(1,1) * X.at(0,2); // const double tmp5 = X.at(2,1) * X.at(1,2) * X.at(0,0); // const double tmp6 = X.at(2,2) * X.at(1,0) * X.at(0,1); // return (tmp1+tmp2+tmp3) - (tmp4+tmp5+tmp6); const eT val1 = Xm[pos<0,0>::n3]*(Xm[pos<2,2>::n3]*Xm[pos<1,1>::n3] - Xm[pos<2,1>::n3]*Xm[pos<1,2>::n3]); const eT val2 = Xm[pos<1,0>::n3]*(Xm[pos<2,2>::n3]*Xm[pos<0,1>::n3] - Xm[pos<2,1>::n3]*Xm[pos<0,2>::n3]); const eT val3 = Xm[pos<2,0>::n3]*(Xm[pos<1,2>::n3]*Xm[pos<0,1>::n3] - Xm[pos<1,1>::n3]*Xm[pos<0,2>::n3]); return ( val1 - val2 + val3 ); } //! @}