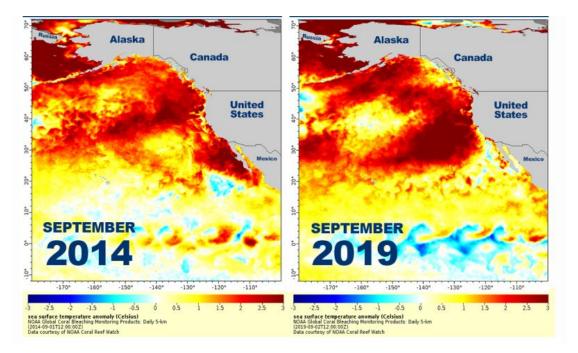
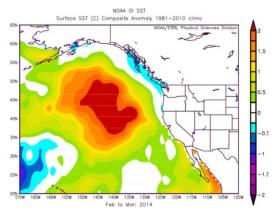


Molecular indicators of performance in Pacific cod exposed to climate stressors

Laura Spencer¹², Ben Laurel³, Emily Slesinger³, Ingrid Spies¹, Mary Beth Rew Hicks³, Louise Copeman³⁴, Sara Schaal^{1,6}, Laura Timm^{1,5}, Wes Larson⁵, Michelle Stowell⁴, Samantha Mundorff³, Carlissa Salant³, Kathleen Durkin²,


Tom Hurst³, Steven Roberts²

¹NOAA AFSC, Seattle
 ²University of Washington SAFS, Seattle
 ³NOAA AFSC, Newport
 ⁴Oregon State University
 ⁵NOAA AFSC, Juneau
 ⁶University of Oklahoma


Gulf of Alaska cod fishery closed in 2020 after marine heatwaves

The Blob returns: Alaska cod fishery closes for 2020

SHARE f 🔣 in 🖼

by Jessica Hathaway in News, Alaska

"The Blob" of 2014 severely depressed the Gulf of Alaska cod population. NOAA image.

NOAA feature story, September 05, 2019

ORIGINAL ARTICLE Den Access @ (i)

Impact of the 2014–2016 marine heatwave on US and Canada West Coast fisheries: Surprises and lessons from key case studies

Correction(s) for this article ~

Christopher M. Free 🔀, Sean C. Anderson, Elizabeth A. Hellmers, Barbara A. Muhling, Michael O. Navarro, Kate Richerson, Lauren A, Rogers, William H, Satterthwaite, Andrew R, Thompson, Jenn M, Burt, Steven D. Gaines, Kristin N. Marshall, J. Wilson White, Lyall F. Bellquist ... See fewer authors \land

First published: 20 April 2023 | https://doi.org/10.1111/faf.12753 | Citations: 6

scientific reports

About the journal Y Publish with us Y Explore content ~

nature > scientific reports > articles > article

Article Open access | Published: 27 June 2024

Marine heatwaves alter the nursery function of coastal habitats for juvenile Gulf of Alaska Pacific cod

Hillary L. Thalmann ¹², Benjamin J. Laurel, L. Zoe Almeida, Kaitlyn E. Osborne, Kaylee Marshall & Jessica A. Miller

Scientific Reports 14. Article number: 14018 (2024) Cite this article

Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave

Benjamin J. Laurel and Lauren A. Rogers

ORIGINAL RESEARCH article Front, Mar. Sci., 19 August 2020 Sec. Marine Affairs and Policy Volume 7 - 2020 | https://doi.org/10.3389/fmars.2020.00703

FISH and FISHERIES

ORIGINAL ARTICLE Den Access

Pacific cod in the Anthropocene: An early life history perspective under changing thermal habitats

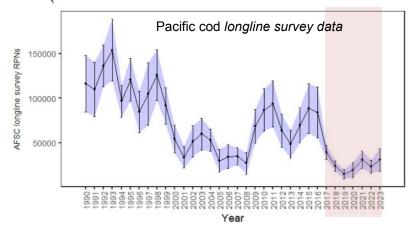
Benjamin J. Laurel 🔀 Alisa Abookire, Steve J. Barbeaux, L. Zoe Almeida, Louise A. Copeman, Janet Duffy-Anderson, Thomas P. Hurst, Michael A. Litzow, Trond Kristiansen, Jessica A. Miller, Wayne Palsson, Sean Rooney, Hillary L. Thalmann, Lauren A. Rogers ... See fewer authors

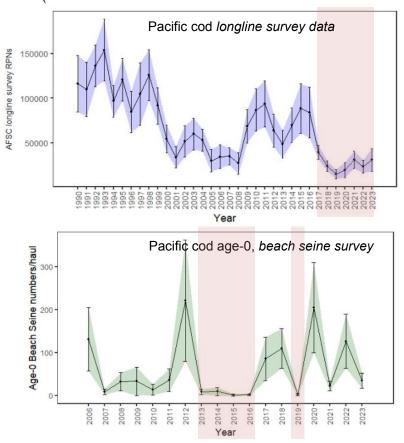
First published: 27 July 2023 | https://doi.org/10.1111/faf.12779 | Citations: 1

Marine Heatwave Stress Test of Ecosystem-Based Fisheries Management in the Gulf of Alaska Pacific Cod Fishery

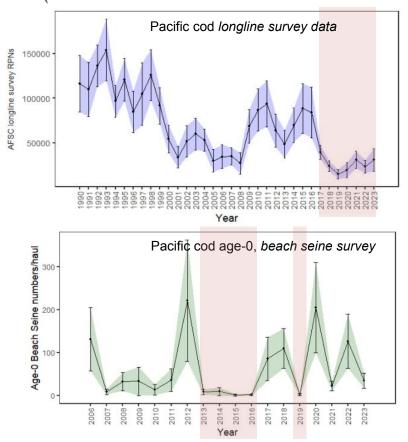
Steven J. Barbeaux Kirstin Holsman

Stephani Zador





Stock Assessment Report. 2023. Gulf of Alaska,



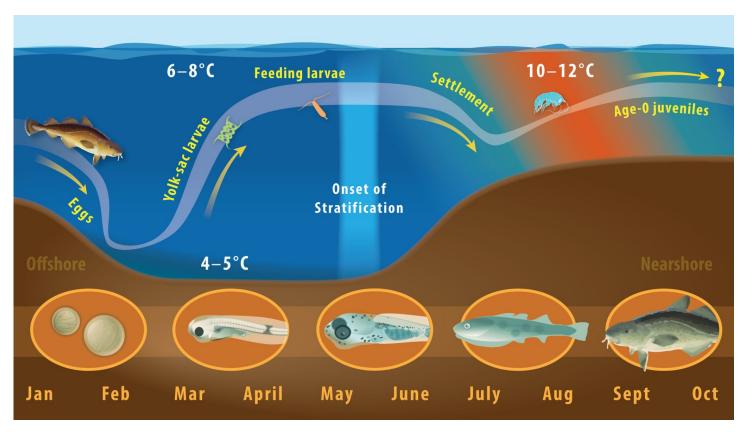
Bering Sea Aleutian Islands Gulf of Alaska Hoff, Stevenson, & Orr 2015

<u>Stock Assessment Report.</u> 2023. Gulf of Alaska,

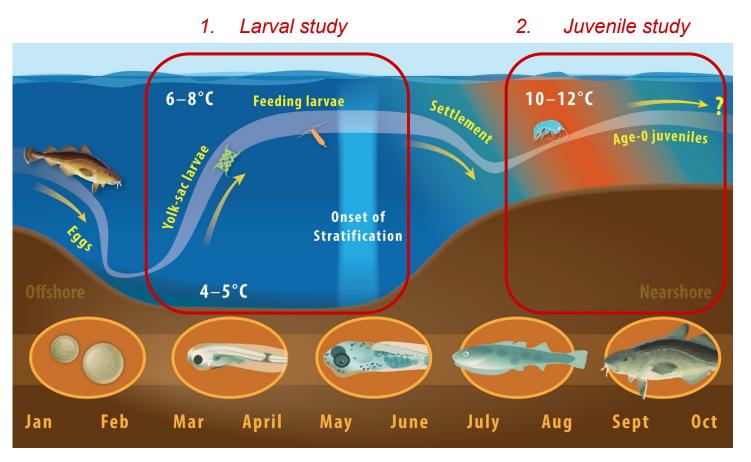
Low Pacific cod recruitment and biomass estimates in Gulf of Alaska coincided/followed the 2014-16 & 2019 marine heatwaves, prompting review of 1st year of life biology and temperature response experiments

Hoff, Stevenson, & Orr 2015

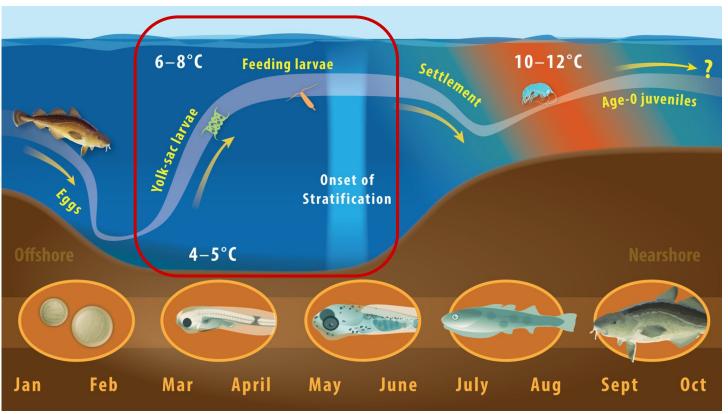
<u>Stock Assessment Report.</u> 2023. Gulf of Alaska,



Big Questions

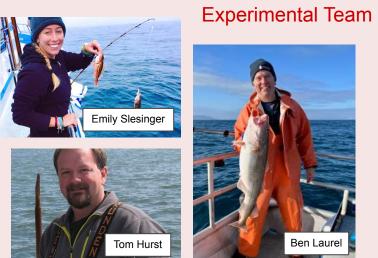

- Why & how does warming affect Pacific cod recruitment?

- Do biological reference points need to be updated in stock assessment models?


- How resilient are Pacific cod populations in Alaska to warming?

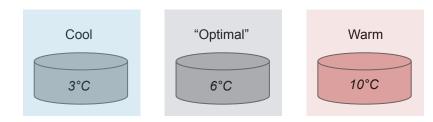
Laurel et al. 2023, in Fish & Fisheries

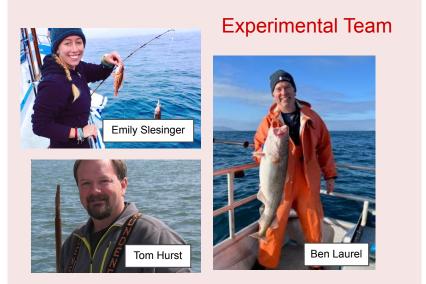
1. Larval study



How does temperature and acidification affect **larval** Pacific cod **survival**, **growth**, **condition**, **& energy allocation**?

Gamete Finder


Gamete Finder

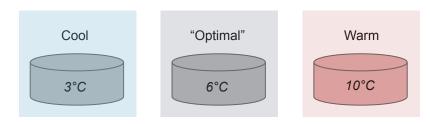


How does temperature and acidification affect larval Pacific cod survival, growth, condition, & energy allocation?

- Adults caught off Kodiak, AK to collect gametes 1 female x 3 males
- Fertilized embryos transported to Newport, OR, reared through feeding stage in 3 temperatures

- Monitored growth & survival, 'omics samples at end
- Acidification treatment too!

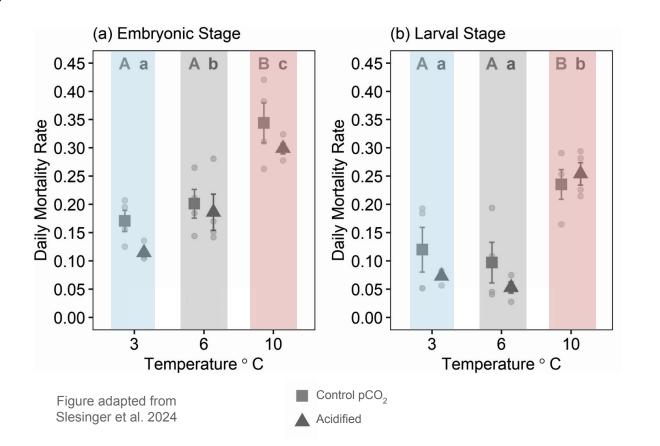
Marine Biology (2024) 171:121 https://doi.org/10.1007/s00227-024-04439-w

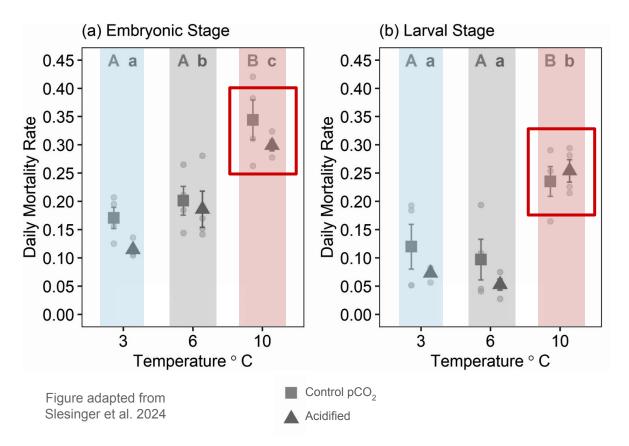

ORIGINAL PAPER

The combined effects of ocean warming and ocean acidification on Pacific cod (*Gadus macrocephalus*) early life stages

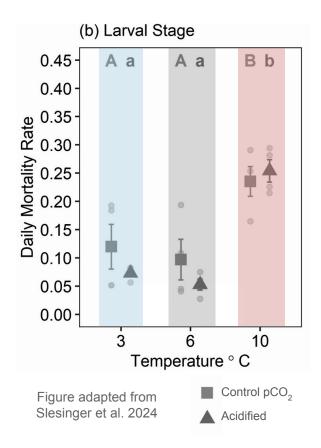
Emily Slesinger^{1,2} · Samantha Mundorff^{1,3} · Benjamin J. Laurel¹ · Thomas P. Hurst¹

Received: 23 June 2023 / Accepted: 11 April 2024 / Published online: 28 April 2024 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 How does temperature and acidification affect larval Pacific cod survival, growth, condition, & energy allocation?


- Adults caught off Kodiak, AK to collect gametes
 1 female x 3 males
- Fertilized embryos transported to Newport, OR,
 reared through feeding stage in 3 temperatures

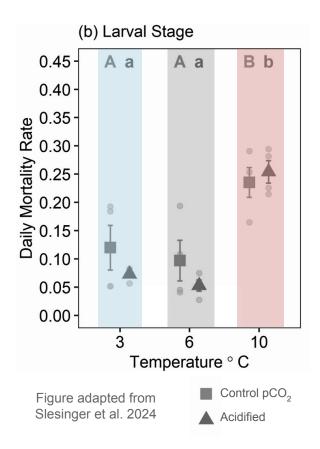

Monitored growth & survival, 'omics samples at end Acidification treatment too!

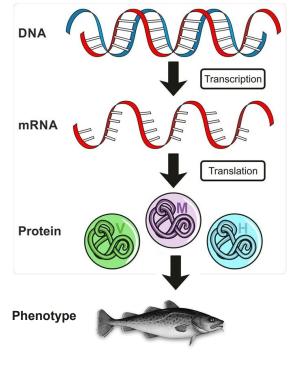
High larval mortality in warming


(and Warm+Acidified)

High larval mortality in warming - *Heat waves likely decreased recruitment due to low larval survival* (and Warm+Acidified)

High larval mortality in warming - *Heat waves likely decreased recruitment due to low larval survival* (and Warm+Acidified)

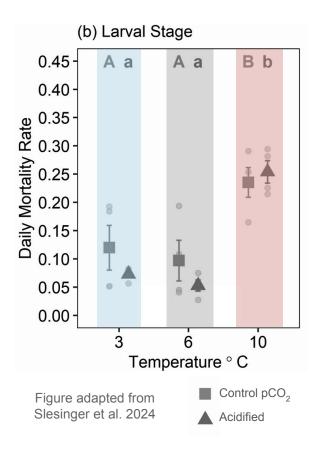

But why?

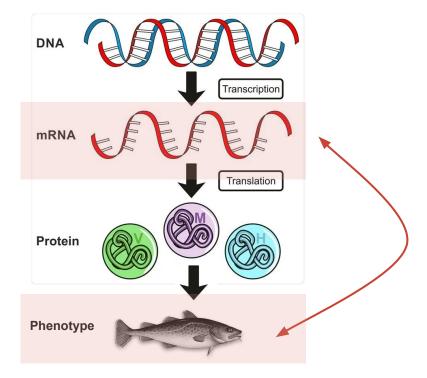

- Gene expression analysis
- 73 larval cod individuals
- n=11-14 / treatment
- Whole-body tissue

Goal: Capture energy allocation, mechanisms of mortality in moribund larvae

High larval mortality in warming

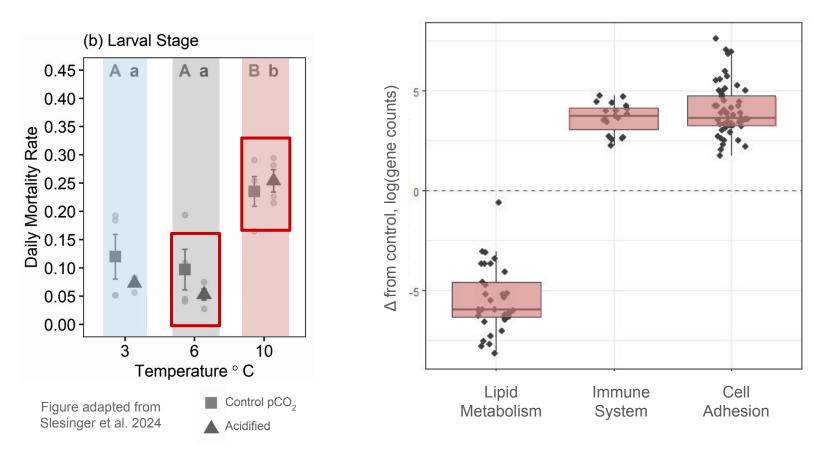
(and Warm+Acidified)

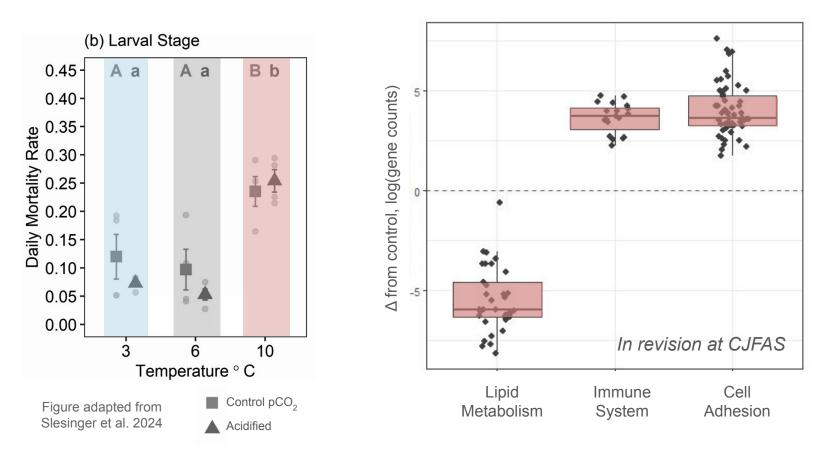




Adapted from: udaix/Shutterstock.com

High larval mortality in warming

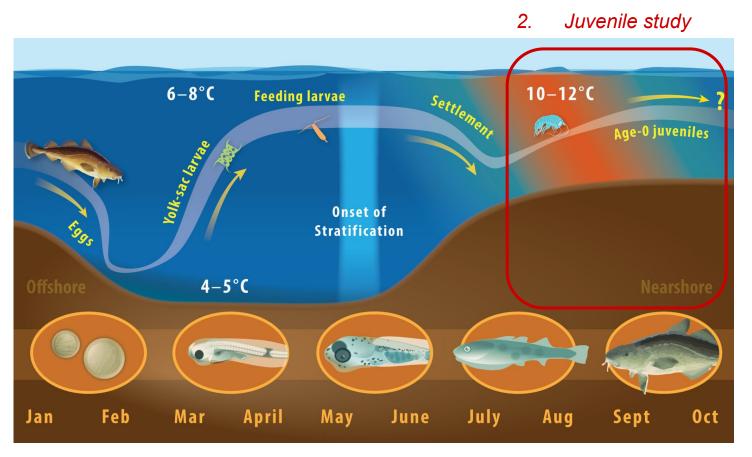

(and Warm+Acidified)



Adapted from: udaix/Shutterstock.com

Hypothesis: high mortality in warming is due to energetic limitations caused by lipid depletion paired with energy-demanding processes (inflammation, cell signaling / stability)

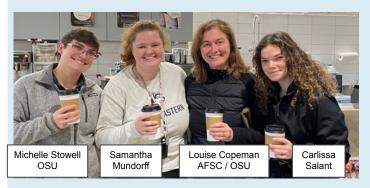
Hypothesis: high mortality in warming is due to energetic limitations caused by lipid depletion paired with energy-demanding processes (inflammation, cell signaling / stability)

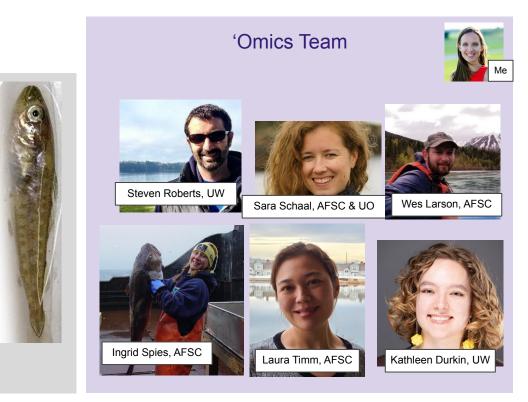

Warming increases larval mortality rates, which likely was a factor influencing recruitment during heatwave years.

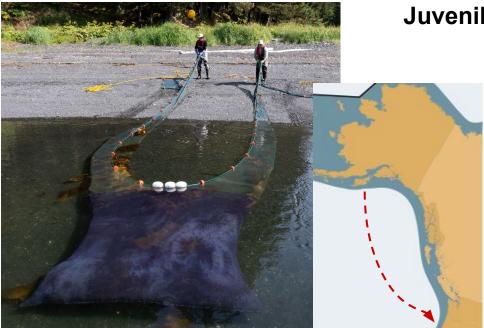
N.

Slesinger et al. 2024, Mar. Bio.

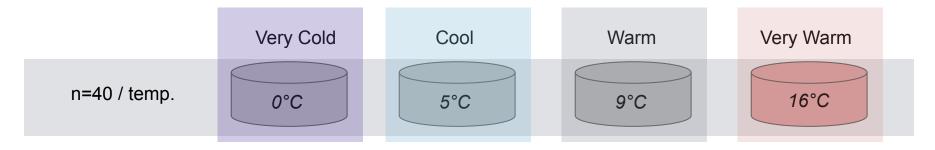
Mechanisms of larval mortality in warming could reflect energetic limitations paired with energy-demanding inflammation and cellular instability.


Spencer et al. In Revision, CJFAS

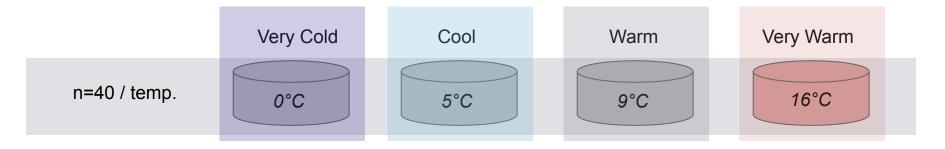

Experimental Team

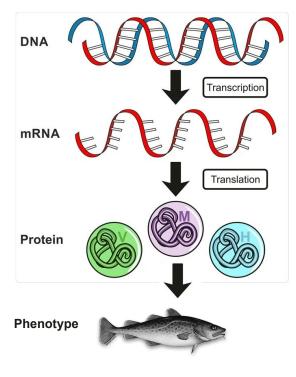


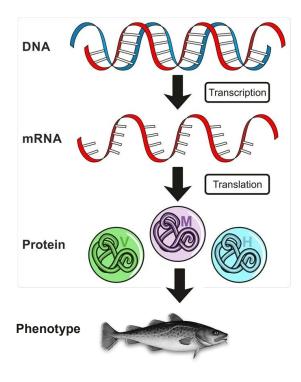
Lipid Team


How does temperature affect **juvenile** Pacific cod **growth**, **survival**, **& energy allocation** in their first fall/winter?

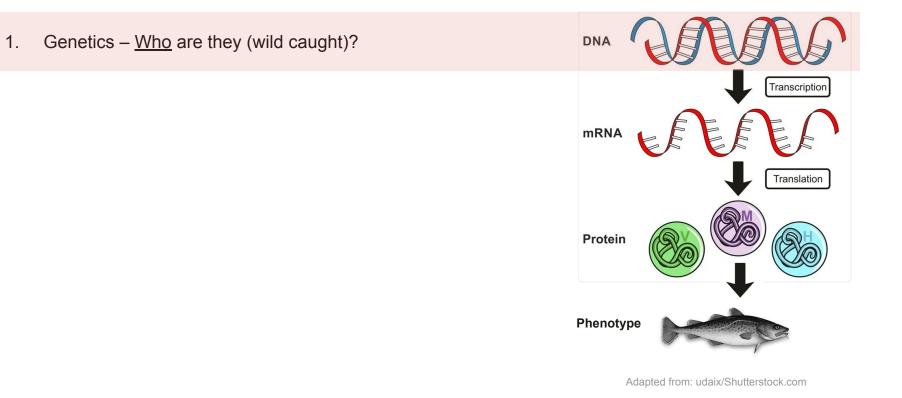
Juvenile temperature experiment


- Wild juveniles (age-0) caught off
 Kodiak, AK late summer
- Transported to Newport, OR wet lab
- Acclimated
- ~6 weeks experiment




Individuals tagged, collected:

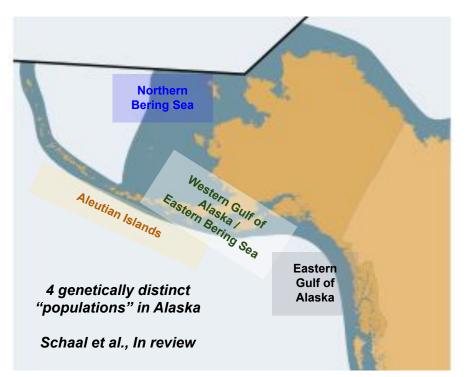
- a. Genetics with fin clips, n=40/temp (lcWGS)
- b. Growth rates (length & wet weight) during acclimation, treatment
- c. Body condition (Kwet)
- d. Liver condition (HSI)
- e. Survival
- f. Liver lipid components (n=25/temp)
- g. Gene expression with liver, n=18/temp (RNASeq)



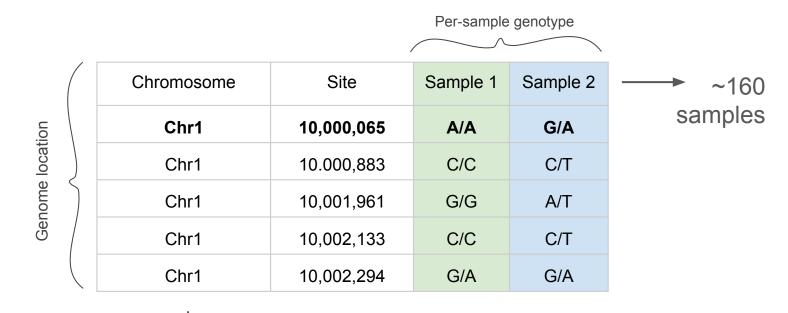
Adapted from: udaix/Shutterstock.com

Adapted from: udaix/Shutterstock.com

- 1. Genetics Who are they?
- 2. Phenotypes How does warming affect key traits?
- Integrate datasets –
 Why are some fish less sensitive?

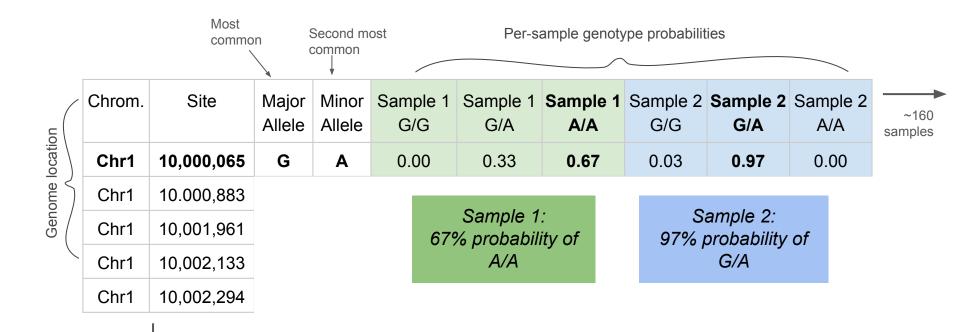


1. Genetics – <u>Who</u> are they (wild caught)?



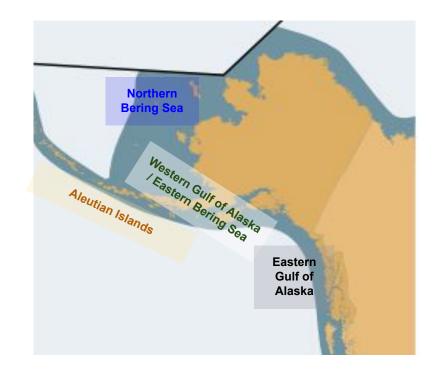
Tools used:

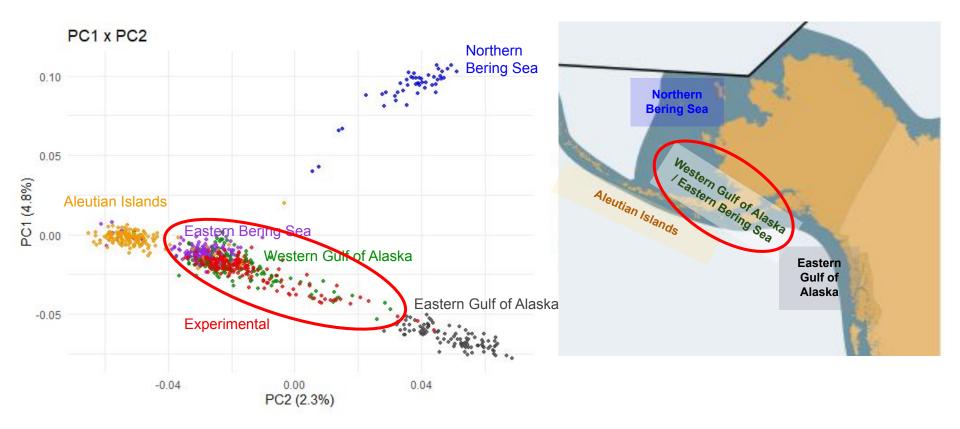
- Sequence whole genome ~3x (i.e. "low-coverage"), n=160
- High-quality reference genome for alignment & genotype probability data


What does genotype data look like?

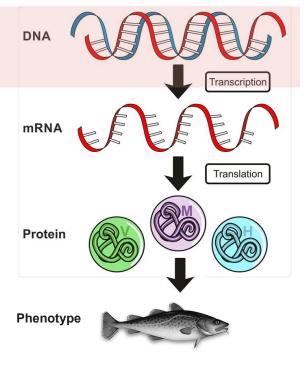
Possible alleles: A,G,T,C 1 from each parent

~350,000 sites

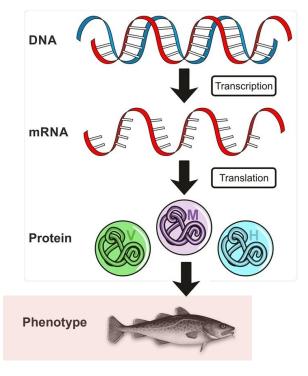

What does genotype probability data look like?


Use genotype probability data to predict population of origin

Used genotype probabilities from:


- 160 experimental fish
- <u>More</u> data: ~55 fish per population (Schaal et al. *In review*), "reference fish"
- 1. Identified sites associated with population differences (top Fst)
- Identified best sites (n=6,101) that predict population, ~96% assignment accuracy in reference fish
- 3. Predict population of origin for experimental fish (wgsassign)

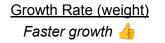
Predicted population of origin = Western GOA / Eastern Bering Sea group


Genetics – they are one population
 western Gulf of Alaska / Eastern Bering Sea

Adapted from: udaix/Shutterstock.com

"Genome-to-Phenome" dataset, Pacific cod juvenile temperature response

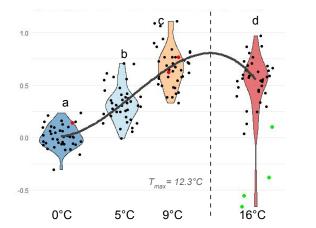
- Genetics they are one population
 western Gulf of Alaska / Eastern Bering Sea
 - Phenotypes <u>how</u> are survival-associated traits affected?

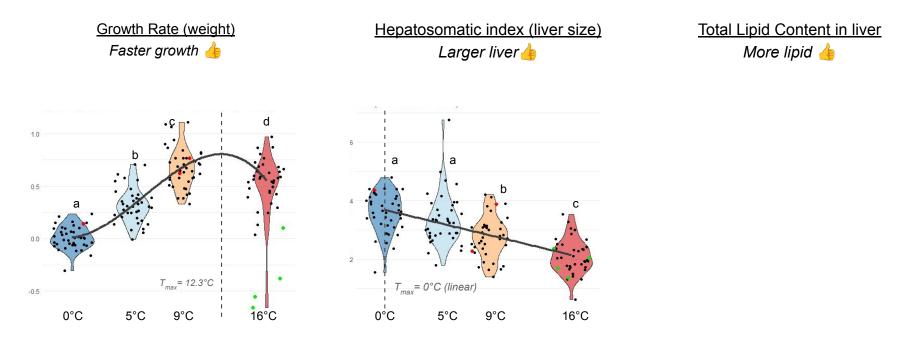


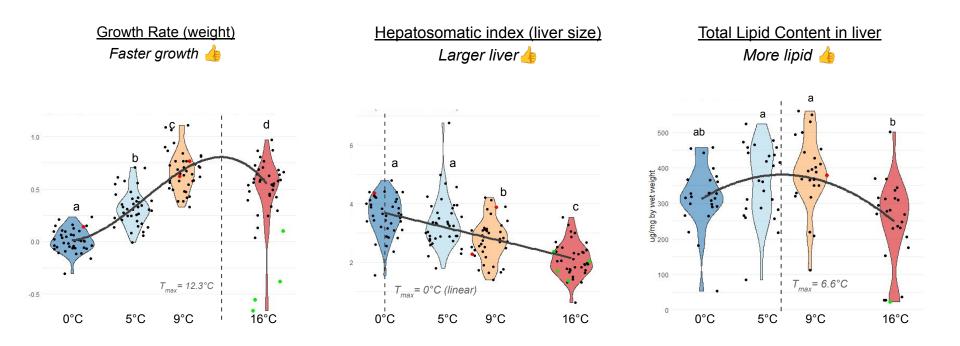
Adapted from: udaix/Shutterstock.com

Growth Rate (weight) Faster growth Hepatosomatic index (liver size)

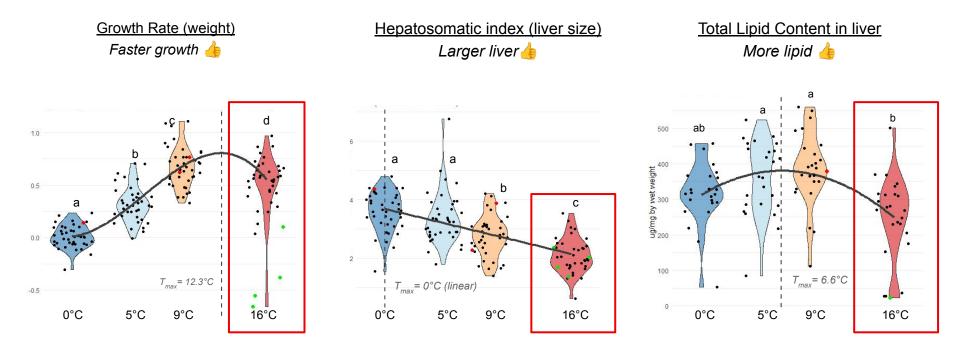
Larger liver 👍

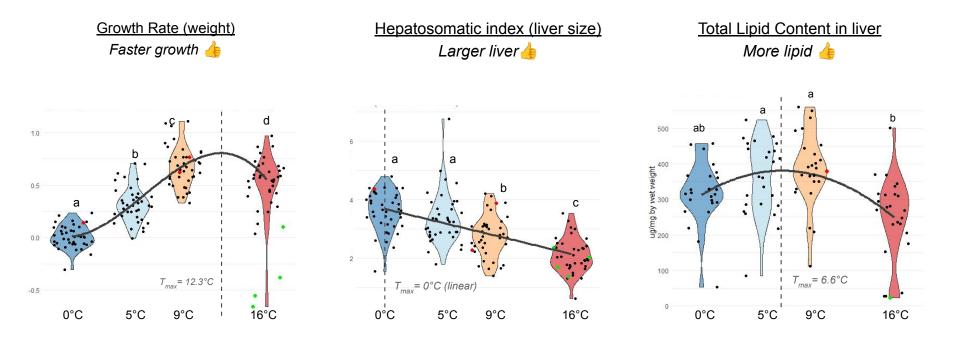

Total Lipid Content in liver More lipid 👍




Hepatosomatic index (liver size)

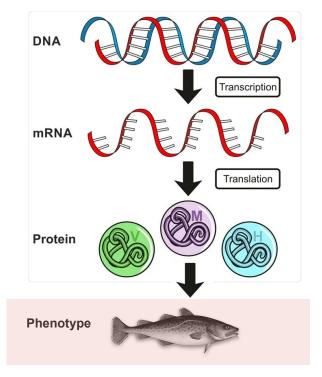
Larger liver 👍


Total Lipid Content in liver More lipid 👍



Warming decreased lipid reserves

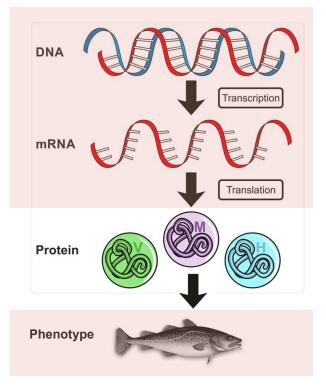
Warming decreased lipid reserves



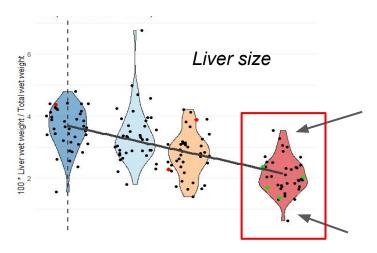
Survived

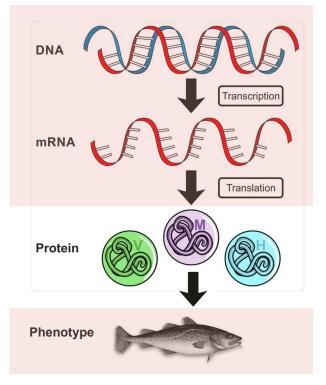
Died

"Genome-to-Phenome" dataset for juvenile Pacific cod

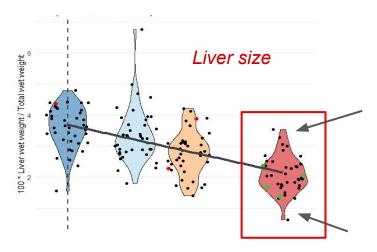

- Genetics they are one population
 western Gulf of Alaska / Eastern Bering Sea
- Phenotypes Fewer lipid reserves in warming, slightly slower growth - juvenile overwinter survival likely lower during heatwave years.

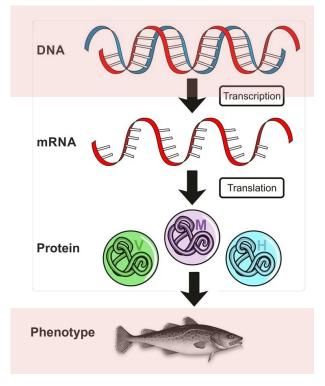
Adapted from: udaix/Shutterstock.com


"Genome-to-Phenome" dataset for juvenile Pacific cod

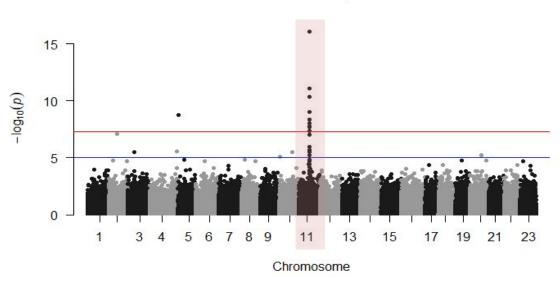

- Genetics they are one population
 western Gulf of Alaska / Eastern Bering Sea
- Phenotypes Fewer lipid reserves in warming, slightly slower growth juvenile overwinter survival likely lower during heatwave years.
 - Integrate datasets Performance indicators!
 - a. Genetic variants
 - b. Expression patterns

Adapted from: udaix/Shutterstock.com


Variation within each temperature - opportunity!

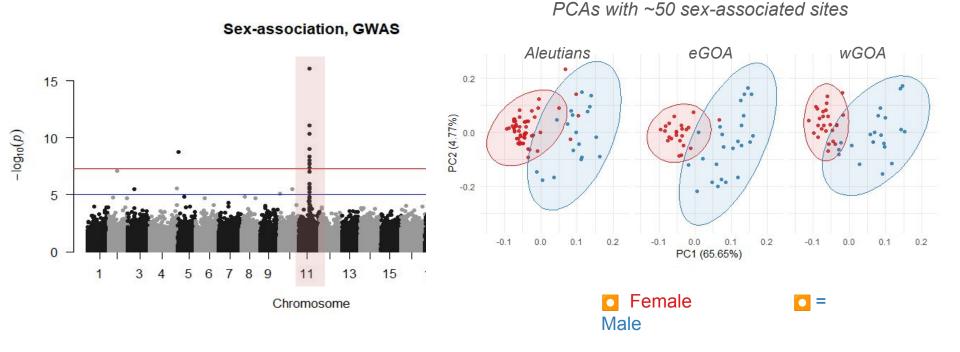

Adapted from: udaix/Shutterstock.com

Variation within each temperature - opportunity!



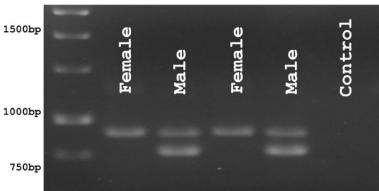
Identified **sites on genome** associated with **liver size**, lipid content, & growth in warming

Genome-Wide Association Studies (GWAS) within each treatment


Adapted from: udaix/Shutterstock.com

Sex-association, GWAS

Leveraged genetic data from ~60 females & ~100 males


Data from Schaal et al. In review

Scientific Reports 9, Article number: 116 (2019) Cite this article

Benchtop sex assay in Atlantic cod

INTERNATIONAL PACIFIC HALIBUT COMMISSION

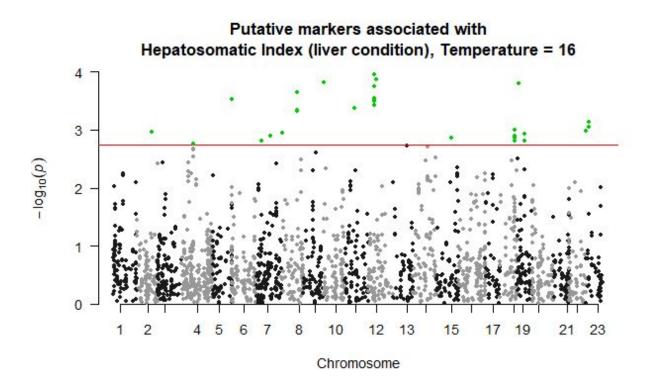
Genetic Markers (SNPs) For Sex Identification

The sex ratio of the commercial fishery catch represents an extremely important source of uncertainty in the annual stock assessment (Stewart and Hicks, 2020). The IPHC has generated sex information of the entire set of aged commercial fishery samples on an annual basis since 2017 (>10,000 fin clips per year). Sex information is obtained using genetic techniques based on the identification of sex-specific single nucleotide polymorphisms (SNPs) (Drinan et al., 2018) using TaqMan qPCR assays conducted at the IPHC's Biological Laboratory. Therefore, direct estimates of the sex-ratio at age for the directed commercial fishery are now available for stock assessment. Sex-ratio information of the commercial catch is likely to further inform selectivity parameters and cumulatively reduce uncertainty in future estimates of stock size, in addition to improving simulation of spawning biomass in the MSE Operating Model.

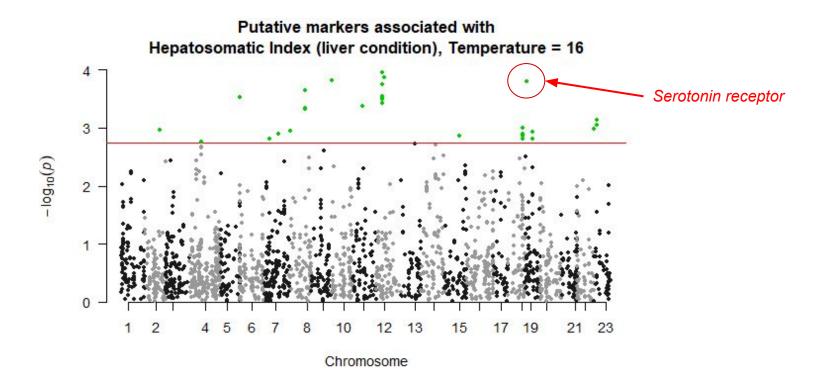
Journal of Heredity, 2018, 326–332 doi:10.1093/jhered/esx102 Brief communication Advance Access publication 9 November 2017

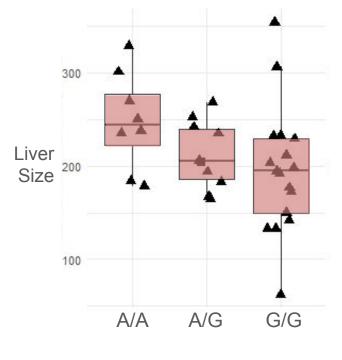
Brief communication

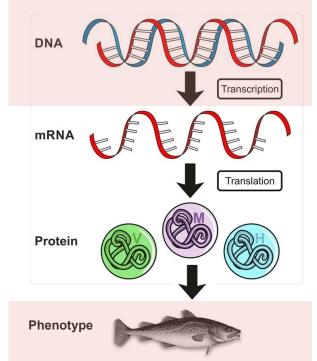
Identification of Genomic Regions Associated With Sex in Pacific Halibut


Daniel P. Drinan, Timothy Loher, and Lorenz Hauser

From the University of Washington, School of Aquatic and Fishery Sciences, Seattle, Washington (Drinan); International Pacific Halibut Commission, Seattle, Washington (Loher); University of Washington, School of Aquatic and Fishery Sciences, Seattle, Washington (Hauser).


Genetic markers add sex data from commercially caught halibut to assessment

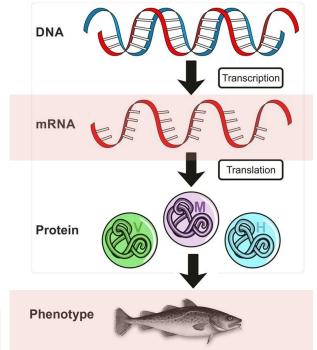




Marker in a gene coding for a **receptor for serotonin** (5-HT4) which regulates appetite

Likely Genotype

"Genome-to-Phenome" dataset for juvenile Pacific cod


- Genetics they are one population
 western Gulf of Alaska / Eastern Bering Sea
- Phenotypes Fewer lipid reserves in warming, slightly slower growth
- Gene expression Lipid usage, immune activity, & damage control may deplete energy reserves
- 1. Integrate datasets Performance indicators!
 - ~100 genetic markers of liver size in warming
 - a. Expression patterns

Adapted from: udaix/Shutterstock.com

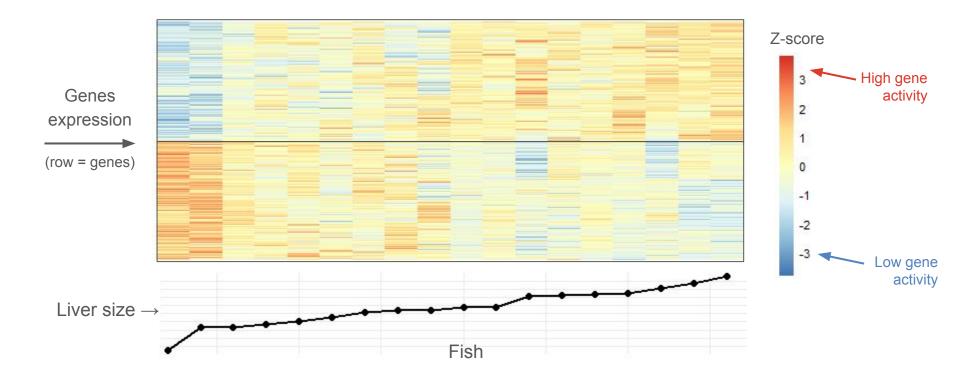
"Genome-to-Phenome" dataset for juvenile Pacific cod

- Genetics they are one population
 western Gulf of Alaska / Eastern Bering Sea
- Phenotypes Fewer lipid reserves in warming, slightly slower growth
- Gene expression Lipid usage, immune activity, & damage control may deplete energy reserves
- 1. Integrate datasets Performance indicators!
 - ✓ ~100 genetic markers of liver size in warming
 - a. Expression patterns

Adapted from: udaix/Shutterstock.com

What does my gene expression data look like?

Gene ID in genome


gene_gadmor	PCG001	PCG004	PCG011	PCG015	PCG017	PCG020	PCG029	PCG035
ND1	8276	8202	8327	7750	5508	4351	5673	6385
ND2	39142	43297	57032	31681	33 <mark>4</mark> 89	30275	38921	36460
COX1	555463	631876	917827	551062	378628	403956	438595	455514
COX2	315625	309958	<mark>493176</mark>	<mark>294979</mark>	189346	229132	227614	219894
ATP6	82892	105415	89100	73253	77770	58061	86703	78859
COX3	165275	189321	235193	135559	112870	81377	135462	126615
ND3	10710	13595	10404	7013	10244	2567	9792	8231
ND4L	19364	31196	42855	16261	20566	17877	21021	16269
ND4	37081	42648	67118	30275	29274	37939	35681	34155
ND5	16299	21803	28239			19960	19262	18187
ND6	4102	3787	318	Gene	count	S 1774	3772	3391
СҮТВ	176843	211635	277395			114784	137070	144369
LOC115539476	260	228	333	219	270	266	312	266
LOC115539709	890	849	919	777	561	461	945	1000
LOC115538781	586	596	576	630	417	450	704	730
abhd14a	1197	1381	1629	1031	774	757	1158	1108
acy1	1626	1244	1670	1245	1224	1386	1566	1642
LOC115537228	2106	2402	2555	2008	1845	2826	2127	2235
LOC115537019	659	544	911	564	505	611	696	444
LOC115538651	727	674	630	564	479	599	554	523
LOC115538267	57	192	81	153	104	137	110	104
kbtbd12	1003	743	646	766	715	875	301	216

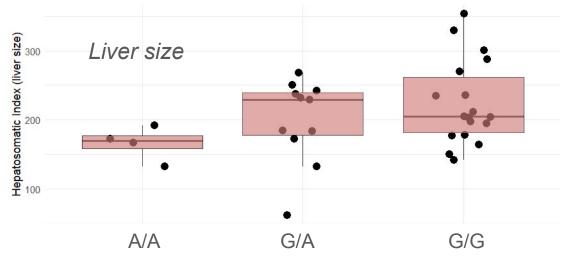
Samples

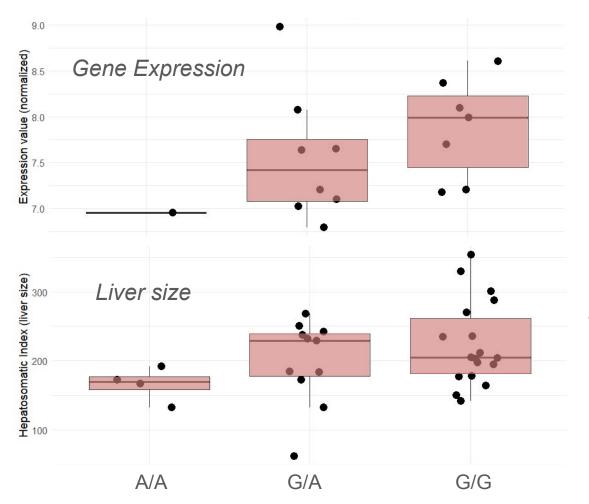
What does my gene expression data look like?

D in gen			Samples					_	functional info for many gene			
\mathbf{X}												
gene_gadmor	PCG001	PCG004	PCG011 [‡]	PCG015	PCG017	PCG020	PCG029	PCG035	spid 🌐	species	evalue	protein_names
ND1	8276	8202	8327	7750	5508	4351	5673	6385	P55779	GADMO	0.00e+00	NADH-ubiquinone oxidoreductase chain 1 (EC 7.1.1.2) (N
ND2	39142	43297	57032	31681	33489	30275	38921	36460	P55780	GADMO	2.40e-158	NADH-ubiquinone oxidoreductase chain 2 (EC 7.1.1.2) (NA
COX1	555463	631876	917827	551062	378628	403956	438595	455514	Q36775	GADMO	0.00e+00	Cytochrome c oxidase subunit 1 (EC 7.1.1.9) (Cytochrome
COX2	315625	309958	493176	<mark>294979</mark>	189346	229132	227614	219894	Q37741	GADMO	1.12e-132	Cytochrome c oxidase subunit 2 (EC 7.1.1.9) (Cytochrome
ATP6	82892	105415	89100	73253	77770	58061	86703	78859	P55778	GADMO	2.60e-104	ATP synthase subunit a (F-ATPase protein 6)
сохз	165275	189321	235193	135559	112870	81377	135462	126615	P55777	GADMO	5.84e-152	Cytochrome c oxidase subunit 3 (EC 7.1.1.9) (Cytochrome
ND3	10710	13595	10404	7013	10244	2567	9792	8231	P15957	GADMO	1.48e-32	NADH-ubiquinone oxidoreductase chain 3 (EC 7.1.1.2) (NA
ND4L	19364	31196	42855	16261	20566	17877	21021	16269	P23633	GADMO	1.08e-41	NADH-ubiquinone oxidoreductase chain 4L (EC 7.1.1.2) (N
ND4	37081	42648	67118	30275	29274	37939	35681	34155	P55781	GADMO	0.00e+00	NADH-ubiquinone oxidoreductase chain 4 (EC 7.1.1.2) (NA
ND5	16299	21803	28239			19960	19262	18187	P55782	GADMO	0.00e+00	NADH-ubiquinone oxidoreductase chain 5 (EC 7.1.1.2) (NA
ND6	4102	3787	318	Gene	count	S 1774	3772	3391	P55783	GADMO	1.86e-42	NADH-ubiquinone oxidoreductase chain 6 (EC 7.1.1.2) (NA
СҮТВ	176843	211635	277395			114784	137070	144369	Q37080	GADMO	0.00e+00	Cytochrome b (Complex III subunit 3) (Complex III subunit
LOC115539476	260	228	333	219	270	266	312	266	Q99MK9	MOUSE	1.66e-27	Ras association domain-containing protein 1 (Protein 123F
LOC115539709	890	849	919	777	561	461	945	1000	Q9WVF8	MOUSE	5.41e-27	Tumor suppressor candidate 2 (Fusion 1 protein) (Fus-1 pr
LOC115538781	586	596	576	630	417	450	704	730	Q12891	HUMAN	3.51e-104	Hyaluronidase-2 (Hyal-2) (EC 3.2.1.35) (Hyaluronoglucosan
abhd14a	1197	1381	1629	1031	774	757	1158	1108	Q1LV46	DANRE	4.34e-34	Protein ABHD14A (EC 3) (Alpha/beta hydrolase domai
acy1	1626	1244	1670	1245	1224	1386	1566	1642	Q6PTT0	RAT	2.57e-16	Aminoacylase-1B (ACY-1B) (EC 3.5.1.14) (ACY IB) (N-acyl-L
LOC115537228	2106	2402	2555	2008	1845	2826	2127	2235	Q6PHS9	MOUSE	1.07e-34	Voltage-dependent calcium channel subunit alpha-2/delta
LOC115537019	659	544	911	564	505	611	696	444	Q90339	CYPCA	1.94e-172	Myosin heavy chain, fast skeletal muscle
LOC115538651	727	674	630	564	479	599	554	523	Q9NXG6	HUMAN	5.61e-20	Transmembrane prolyl 4-hydroxylase (P4H-TM) (EC 1.14.1
LOC115538267	57	192	81	153	104	137	110	104	Q8CIW6	MOUSE	3.91e-23	Solute carrier family 26 member 6 (Anion exchange transp
kbtbd12	1003	743	646	766	715	875	301	216	Q3ZB90	DANRE	0.00e+00	Kelch repeat and BTB domain-containing protein 12 (Kelch
										and the second se		

~ 1,600 genes with <u>expression</u> associated with liver size in warming

Liver size performance indicators in **warming**, both GENETICS and EXPRESSION

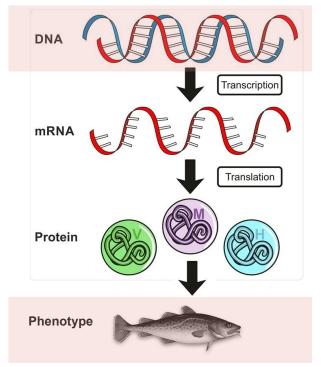

Cell	Chromosome	# of markers	Gene ID	Protein Name	Function
adhesion	4	3	LOC132456135	Netrin receptor UNC5D	Cell adhesion, apoptosis in response to DNA damage
Calcium	12	2	tmco1	Calcium load-activated calcium channel	Calcium transport, endoplasmic reticulum calcium homeostasis
transport	10	1	LOC132466560	TBC1 domain family member 9B	Membrane trafficking, calcium transport
2		1	LOC132453053	Stonustoxin subunit beta	May be related immune system function. From stonefish, toxic/fatal to mammals.
Immune	5	1	LOC132457513	Stonustoxin subunit beta	May be related immune system function. From stonefish, toxic/fatal to mammals.
<i>system</i> 23	23	1	LOC132452628	NLR family CARD domain-containing protein 3	Negative regulator of the innate immune response
	23	1	LOC132452644	HERV-H LTR-associating protein 2	Enhances T-cell proliferation and cytokine production
	17	2	LOC132445594	Unknown	Unknown


Liver size performance indicators in **warming**, both GENETICS and EXPRESSION

Cell	Chromosome	# of markers	Gene ID	Protein Name	Function
adhesion	4	3	LOC132456135	Netrin receptor UNC5D	Cell adhesion, apoptosis in response to DNA damage
Calcium	12	2	tmco1	Calcium load-activated calcium channel	Calcium transport, endoplasmic reticulum calcium homeostasis
transport	10	1	LOC132466560	TBC1 domain family member 9B	Membrane trafficking, calcium transport
	2	1	LOC132453053	Stonustoxin subunit beta	May be related immune system function. From stonefish, toxic/fatal to mammals.
Immune	5	1	LOC132457513	Stonustoxin subunit beta	May be related immune system function. From stonefish, toxic/fatal to mammals.
system	23	1	LOC132452628	NLR family CARD domain-containing protein 3	Negative regulator of the innate immune response
	23	1	LOC132452644	HERV-H LTR-associating protein 2	Enhances T-cell proliferation and cytokine production
	17	2	LOC132445594	Unknown	Unknown

NLR family CARD domain-containing protein 3

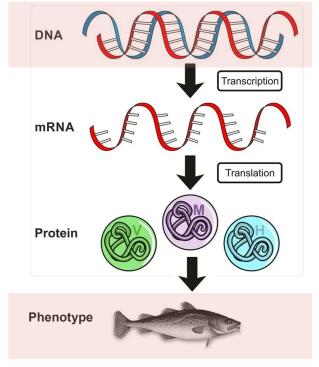
Negatively regulates immune system



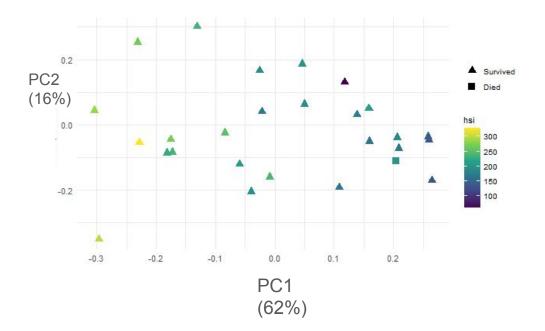
NLR family CARD domain-containing protein 3

Negatively regulates immune system

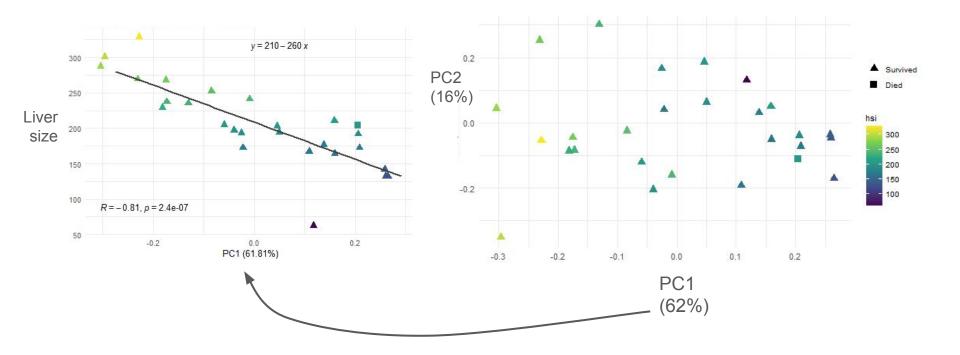
This marker found in all four temperature treatments "Genome-to-Phenome" dataset for juvenile Pacific cod


- Genetics they are one population
 western Gulf of Alaska / Eastern Bering Sea
- Phenotypes Fewer lipid reserves in warming, slightly slower growth
- Gene expression Lipid usage, immune activity, & damage control may deplete energy reserves
- ✓ Markers of juvenile performance in warming
 - ~100 genetic markers
 - ✓ ~1,600 gene expression indicators

Adapted from: udaix/Shutterstock.com

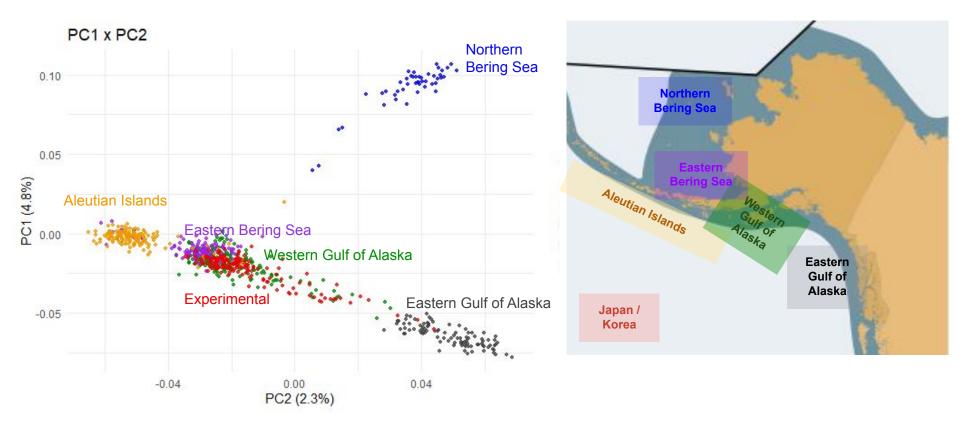

"Genome-to-Phenome" dataset for juvenile Pacific cod

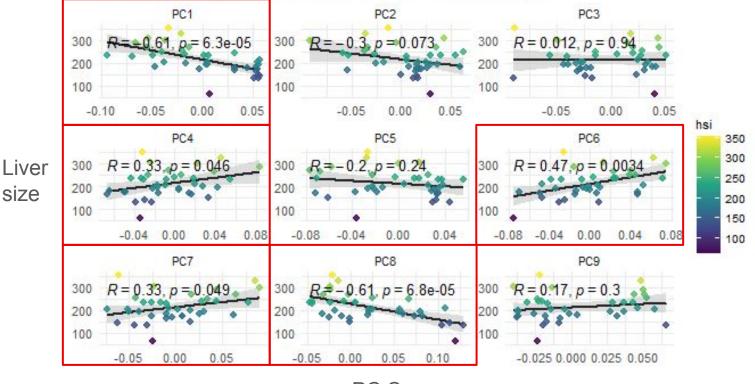
- Genetics they are one population
 western Gulf of Alaska / Eastern Bering Sea
- Phenotypes Fewer lipid reserves in warming, slightly slower growth
- Gene expression Lipid usage, immune activity, & damage control may deplete energy reserves
- ✓ Markers of juvenile performance in warming
 - ~100 genetic markers
 - ~1,600 gene expression indicators
- Can we predict "performance" or "resilience" of other cod groups using our markers?



Adapted from: udaix/Shutterstock.com

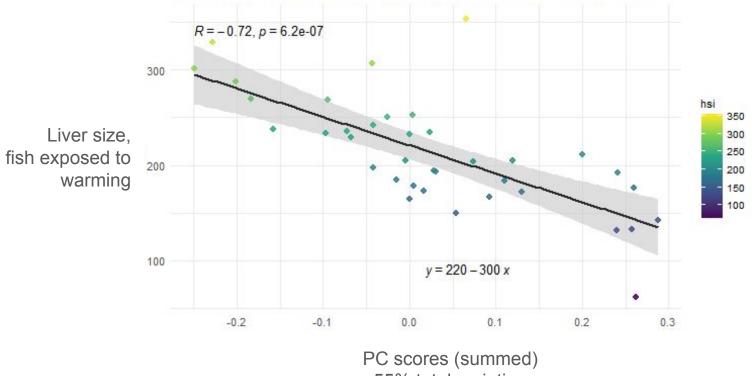
PCA from genotype probabilities, liver size markers in warm fish only

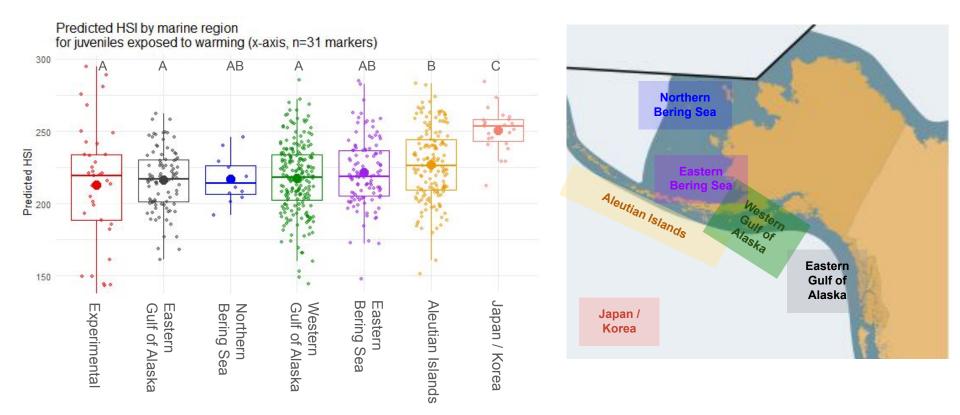



PCA from genotype probabilities @ 32 top liver size markers, warm fish only

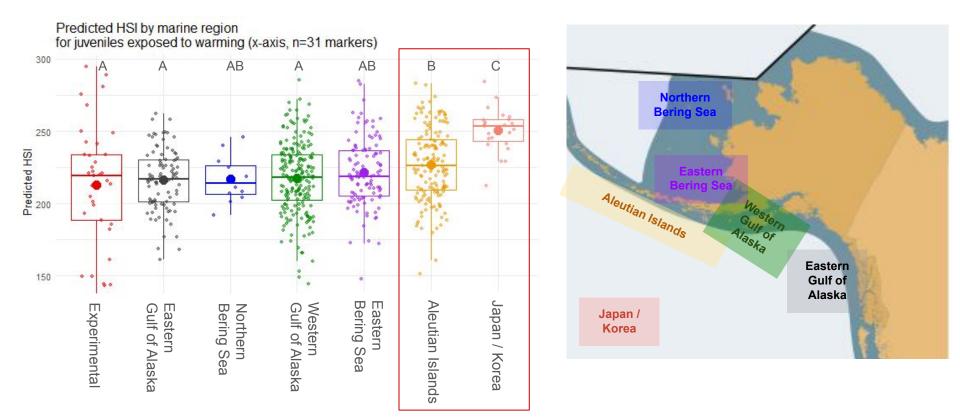
Exploratory analysis:

Which populations would we predict to have largest livers in warm conditions?



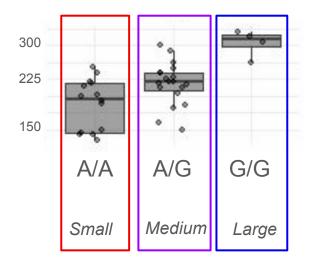

PC Score

Step 2. Model liver size ~ PC scores in experimental fish



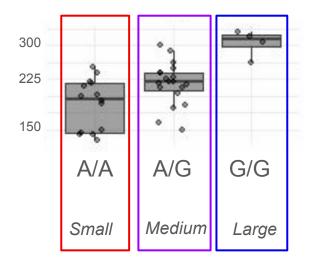
55% total variation

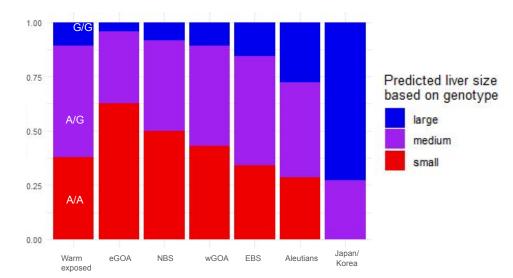
Step 3. Use PC-based model to predict liver size in other populations


Step 3. Use PC-based model to predict liver size in other populations

Example marker in gene GalNAc-T2

- Cell signaling, cell adhesion, and protecting the mucosal surfaces in various tissues
- Glygoprotein / glycolipid biosynthesis


Actual liver size ~ likely genotype Warm-exposed fish


Example marker in gene GaINAc-T2

- Cell signaling, cell adhesion, and protecting the mucosal surfaces in various tissues
- Glygoprotein / glycolipid biosynthesis

Actual liver size ~ likely genotype *Warm-exposed fish*

Predicted liver size based on likely genotype Reference fish & warm-exposed fish

- Low recruitment in GoA during heatwaves is likely related to high larval mortality and low juvenile overwintering survival, both related to *lipid metabolism, inflammation, and cell adhesion effects*.
- Stock assessments may need to **adjust reference points** in heat wave years
- Genetic variability related to adaptive traits may enable selection for juveniles more capable of allocating lipid reserves, more resilient populations
- Other Pacific cod groups could be screened for **putative markers of performance**
 - Through time before/during/after heat waves (future project!) is selection happening?
 - Distinct Pacific cod groups are some groups more resilient than others?
 - Juveniles using different nursery habitat (onshore vs. offshore, Laurel study)

Building Genomics Database – Sequence data + metadata = opportunities for integration!

Sex identification – for sex data from fisheries or surveys, benchtop assay for experiments, surveys using DNA

Tagging studies – identify sex, population of origin, other markers (e.g. climate resilience) using fin clips

Ancient DNA studies – have genotypes at temperature-sensitive / performance markers changed through time?

Aging tools – "Epigenetic clock", if developed, to estimate ages from DNA

Assay development – Expression data in lieu of more invasive / costly measurements (e.g. lipid components)

eDNA – Collected during surveys to estimate species presence, quantify relative abundance

Newport

Ben Laurel Emily Slesinger Louise Copeman MaryBeth Hicks Tom Hurst

Seattle

Ingrid Spies Sara Schaal

Juneau

Laura Timm

University of Washington

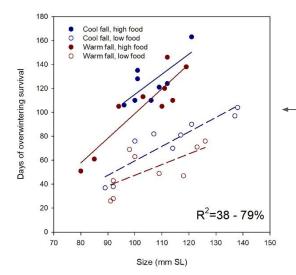
SCHOOL OF AOUATIC

& FISHERY

SCIENCES

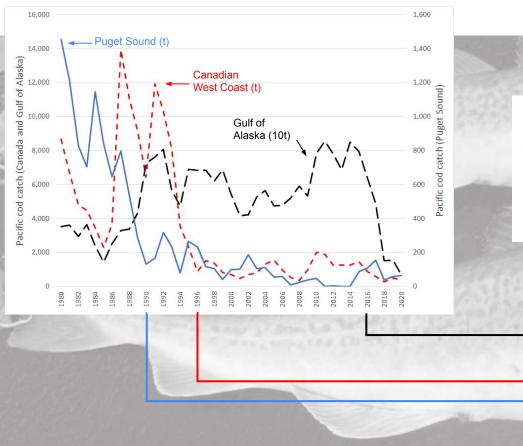
Steven Roberts Kathleen Durkin

Collaborators & Funders

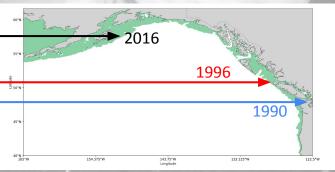


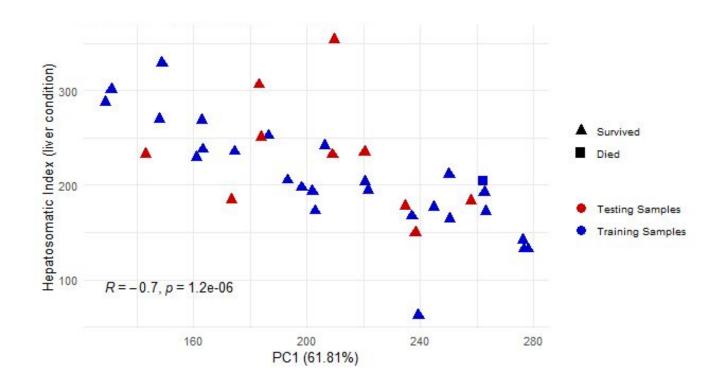
Extra slides

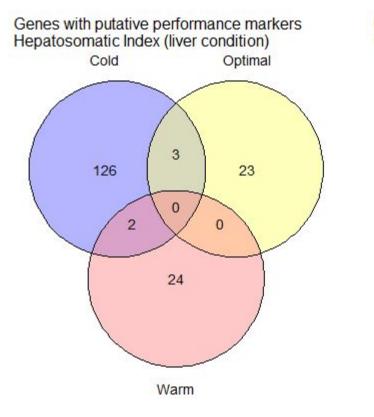
Juvenile cod overwintering survival depends on size, lipid reserves, and both are temperature-dependent

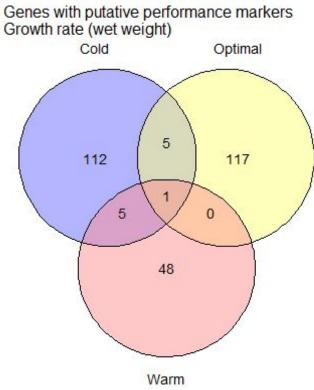


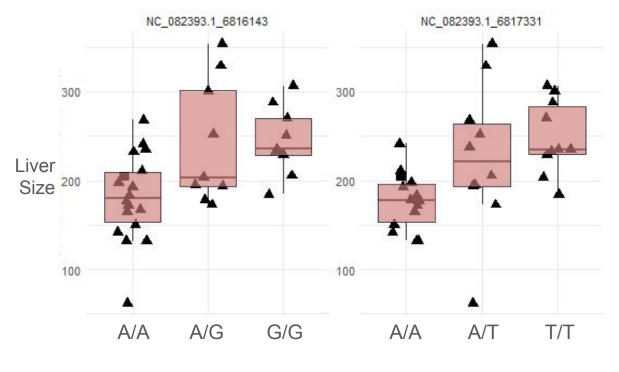
Overwintering survival is *higher* after **cooler** autumns


Laurel et al., in review at CJFAS


A latitudinal progression of population decline...




Low Pacific cod recruitment and biomass estimates in Gulf of Alaska coincided/followed the 2014-16 marine heatwaves, prompting review of 1st year of life biology and temperature response experiments


PCA from genotype probabilities @ 32 top liver size markers, warm fish only

One markers in a gene coding for a calcium channel

involved in calcium homeostasis, metabolic regulation

Likely Genotype