Use miRDeep2 (Friedländer et al. 2011) to identify potential miRNAs using P.evermanni sRNAseq reads.


Inputs:

Outputs:

  • Primary outputs are a result table in BED, CSV (tab-delimited), and HTML formats.

  • Due to the nature of mirDeep2’s naming, trying to use variable names is challenging. As such, the chunks processing those files will require manual intervention to identify and provide the output filename(s); they are not handled at in the .bashvars file at the top of this script.

  • Other output files are too large for GitHub (and some (all?) are not needed for this analysis). Please find a full backup here:


1 Create a Bash variables file

This allows usage of Bash variables across R Markdown chunks.

{
echo "#### Assign Variables ####"
echo ""

echo "# Trimmed FastQ naming pattern"
echo "export trimmed_fastqs_pattern='*-31bp-merged.fq.gz'"
echo ""

echo "# Data directories"
echo 'export deep_dive_dir=/home/shared/8TB_HDD_02/shedurkin/deep-dive'
echo 'export deep_dive_data_dir="${deep_dive_dir}/data"'
echo 'export output_dir_top=${deep_dive_dir}/E-Peve/output/11.1-Peve-sRNAseq-miRdeep2-31bp-fastp-merged-cnidarian_miRBase'
echo 'export genome_fasta_dir=${deep_dive_dir}/E-Peve/data'
echo 'export trimmed_fastqs_dir="${deep_dive_dir}/E-Peve/output/06.2-Peve-sRNAseq-trimming-31bp-fastp-merged/trimmed-reads"'
echo 'export collapsed_reads_dir="${deep_dive_dir}/E-Peve/output/10.2-Peve-sRNAseq-BLASTn-31bp-fastp-merged"'
echo ""

echo "# Input/Output files"
echo 'export collapsed_reads_fasta="collapsed-reads-all.fasta"'
echo 'export collapsed_reads_mirdeep2="collapsed-reads-all-mirdeep2.fasta"'
echo 'export collapsed_reads_mirdeep2_over17bp="collapsed-reads-over17bp-mirdeep2.fasta"'
echo 'export concatenated_trimmed_reads_fastq="concatenated-trimmed-reads-all.fastq.gz"'
echo 'export genome_fasta_name="Porites_evermanni_v1.fa"'
echo 'export genome_fasta_no_spaces="Porites_evermanni_v1_genomic-no_spaces.fna"'
echo 'export mirdeep2_mapping_file="Peve-mirdeep2-mapping.arf"'
echo 'export mirbase_mature_fasta_name="cnidarian-mirbase-mature-v22.1.fasta"'
echo 'export mirbase_mature_fasta_no_spaces="cnidarian-mirbase-mature-v22.1-no_spaces.fa"'
echo ""


echo "# Paths to programs"
echo 'export mirdeep2_mapper="mapper.pl"'
echo 'export mirdeep2="miRDeep2.pl"'
echo 'export bowtie_build="/home/shared/bowtie-1.3.1-linux-x86_64/bowtie-build"'
echo ""

echo "# Set number of CPUs to use"
echo 'export threads=46'
echo ""

echo "# Initialize arrays"
echo 'export trimmed_fastqs_array=()'


} > .bashvars

cat .bashvars
#### Assign Variables ####

# Trimmed FastQ naming pattern
export trimmed_fastqs_pattern='*-31bp-merged.fq.gz'

# Data directories
export deep_dive_dir=/home/shared/8TB_HDD_02/shedurkin/deep-dive
export deep_dive_data_dir="${deep_dive_dir}/data"
export output_dir_top=${deep_dive_dir}/E-Peve/output/11.1-Peve-sRNAseq-miRdeep2-31bp-fastp-merged-cnidarian_miRBase
export genome_fasta_dir=${deep_dive_dir}/E-Peve/data
export trimmed_fastqs_dir="${deep_dive_dir}/E-Peve/output/06.2-Peve-sRNAseq-trimming-31bp-fastp-merged/trimmed-reads"
export collapsed_reads_dir="${deep_dive_dir}/E-Peve/output/10.2-Peve-sRNAseq-BLASTn-31bp-fastp-merged"

# Input/Output files
export collapsed_reads_fasta="collapsed-reads-all.fasta"
export collapsed_reads_mirdeep2="collapsed-reads-all-mirdeep2.fasta"
export collapsed_reads_mirdeep2_over17bp="collapsed-reads-over17bp-mirdeep2.fasta"
export concatenated_trimmed_reads_fastq="concatenated-trimmed-reads-all.fastq.gz"
export genome_fasta_name="Porites_evermanni_v1.fa"
export genome_fasta_no_spaces="Porites_evermanni_v1_genomic-no_spaces.fna"
export mirdeep2_mapping_file="Peve-mirdeep2-mapping.arf"
export mirbase_mature_fasta_name="cnidarian-mirbase-mature-v22.1.fasta"
export mirbase_mature_fasta_no_spaces="cnidarian-mirbase-mature-v22.1-no_spaces.fa"

# Paths to programs
export mirdeep2_mapper="mapper.pl"
export mirdeep2="miRDeep2.pl"
export bowtie_build="/home/shared/bowtie-1.3.1-linux-x86_64/bowtie-build"

# Set number of CPUs to use
export threads=46

# Initialize arrays
export trimmed_fastqs_array=()

2 Prepare reads for miRDeep2

Per miRDeep2 documentation:

The readID must end with _xNumber and is not allowed to contain whitespaces. has to have the format name_uniqueNumber_xnumber

# Load bash variables into memory
source .bashvars


sed '/^>/ s/-/_x/g' "${collapsed_reads_dir}/${collapsed_reads_fasta}" \
| sed '/^>/ s/>/>seq_/' \
> "${output_dir_top}/${collapsed_reads_mirdeep2}"

grep "^>" ${collapsed_reads_dir}/${collapsed_reads_fasta} \
| head

echo ""
echo "--------------------------------------------------"
echo ""

grep "^>" ${output_dir_top}/${collapsed_reads_mirdeep2} \
| head
>1-2039267
>2-1218024
>3-551889
>4-472935
>5-375248
>6-292862
>7-292012
>8-258161
>9-226514
>10-214759

--------------------------------------------------

>seq_1_x2039267
>seq_2_x1218024
>seq_3_x551889
>seq_4_x472935
>seq_5_x375248
>seq_6_x292862
>seq_7_x292012
>seq_8_x258161
>seq_9_x226514
>seq_10_x214759

3 Filter out sequences <17bp in length

mirDeep2 only accepts sequences at least 17bp long

# Load bash variables into memory
source .bashvars

# Only do this if you haven't already filtered by size
if [ ! -e "${output_dir_top}/${collapsed_reads_mirdeep2_over17bp}" ]; then
# Loop through the file
  while IFS= read -r line || [[ -n "$line" ]]; do
#    echo "checking line $line"
    # Check if the line contains a sequence ID
    if [[ "$line" == ">"* ]]; then
        sequence_id="$line"
        read -r sequence_line
        # Check if the sequence length is greater than or equal to 17
        if [ ${#sequence_line} -ge 17 ]; then
            #echo "Writing to filtered_sequences_long.txt: $sequence_id"
            echo "$sequence_id" >> "${output_dir_top}/${collapsed_reads_mirdeep2_over17bp}"
            echo "$sequence_line" >> "${output_dir_top}/${collapsed_reads_mirdeep2_over17bp}"
        else
            #echo "Writing to filtered_sequences_short.txt: $sequence_id"
            echo "$sequence_id" >> "${output_dir_top}/less_than_17bp.fasta"
            echo "$sequence_line" >> "${output_dir_top}/less_than_17bp.fasta"
        fi
    fi
  done < "${output_dir_top}/${collapsed_reads_mirdeep2}"
fi

wc -l ${output_dir_top}/${collapsed_reads_mirdeep2}
wc -l ${output_dir_top}/${collapsed_reads_mirdeep2_over17bp}
head ${output_dir_top}/less_than_17bp.fasta

4 Reformat genome FastA description lines

miRDeep2 can’t process genome FastAs with spaces in the description lines.

So, I’m replacing spaces with underscores.

And, for aesthetics, I’m also removing commas.

# Load bash variables into memory
source .bashvars


sed '/^>/ s/ /_/g' "${genome_fasta_dir}/${genome_fasta_name}" \
| sed '/^>/ s/,//g' \
> "${genome_fasta_dir}/${genome_fasta_no_spaces}"

grep "^>" ${genome_fasta_dir}/${genome_fasta_name} \
| head

echo ""
echo "--------------------------------------------------"
echo ""

grep "^>" ${genome_fasta_dir}/${genome_fasta_no_spaces} \
| head
>Porites_evermani_scaffold_1
>Porites_evermani_scaffold_2
>Porites_evermani_scaffold_3
>Porites_evermani_scaffold_4
>Porites_evermani_scaffold_5
>Porites_evermani_scaffold_6
>Porites_evermani_scaffold_7
>Porites_evermani_scaffold_8
>Porites_evermani_scaffold_9
>Porites_evermani_scaffold_10

--------------------------------------------------

>Porites_evermani_scaffold_1
>Porites_evermani_scaffold_2
>Porites_evermani_scaffold_3
>Porites_evermani_scaffold_4
>Porites_evermani_scaffold_5
>Porites_evermani_scaffold_6
>Porites_evermani_scaffold_7
>Porites_evermani_scaffold_8
>Porites_evermani_scaffold_9
>Porites_evermani_scaffold_10

5 Reformat miRBase FastA description lines

# Load bash variables into memory
source .bashvars


sed '/^>/ s/ /_/g' "${deep_dive_data_dir}/${mirbase_mature_fasta_name}" \
| sed '/^>/ s/,//g' \
> "${deep_dive_data_dir}/${mirbase_mature_fasta_no_spaces}"

grep "^>" ${deep_dive_data_dir}/${mirbase_mature_fasta_name} \
| head

echo ""
echo "--------------------------------------------------"
echo ""

grep "^>" ${deep_dive_data_dir}/${mirbase_mature_fasta_no_spaces} \
| head
>cel-let-7-5p MIMAT0000001 Caenorhabditis elegans let-7-5p
>cel-let-7-3p MIMAT0015091 Caenorhabditis elegans let-7-3p
>cel-lin-4-5p MIMAT0000002 Caenorhabditis elegans lin-4-5p
>cel-lin-4-3p MIMAT0015092 Caenorhabditis elegans lin-4-3p
>cel-miR-1-5p MIMAT0020301 Caenorhabditis elegans miR-1-5p
>cel-miR-1-3p MIMAT0000003 Caenorhabditis elegans miR-1-3p
>cel-miR-2-5p MIMAT0020302 Caenorhabditis elegans miR-2-5p
>cel-miR-2-3p MIMAT0000004 Caenorhabditis elegans miR-2-3p
>cel-miR-34-5p MIMAT0000005 Caenorhabditis elegans miR-34-5p
>cel-miR-34-3p MIMAT0015093 Caenorhabditis elegans miR-34-3p

--------------------------------------------------

>cel-let-7-5p_MIMAT0000001_Caenorhabditis_elegans_let-7-5p
>cel-let-7-3p_MIMAT0015091_Caenorhabditis_elegans_let-7-3p
>cel-lin-4-5p_MIMAT0000002_Caenorhabditis_elegans_lin-4-5p
>cel-lin-4-3p_MIMAT0015092_Caenorhabditis_elegans_lin-4-3p
>cel-miR-1-5p_MIMAT0020301_Caenorhabditis_elegans_miR-1-5p
>cel-miR-1-3p_MIMAT0000003_Caenorhabditis_elegans_miR-1-3p
>cel-miR-2-5p_MIMAT0020302_Caenorhabditis_elegans_miR-2-5p
>cel-miR-2-3p_MIMAT0000004_Caenorhabditis_elegans_miR-2-3p
>cel-miR-34-5p_MIMAT0000005_Caenorhabditis_elegans_miR-34-5p
>cel-miR-34-3p_MIMAT0015093_Caenorhabditis_elegans_miR-34-3p

6 Bowtie v1 genome index

miRDeep2 requires a Bowtie v1 genome index - cannot use Bowtie2 index

# Load bash variables into memory
source .bashvars

# Check for existence of genome index first
if [ ! -f "${genome_fasta_no_spaces%.*}.ebwt" ]; then
  ${bowtie_build} \
  ${genome_fasta_dir}/${genome_fasta_no_spaces} \
  ${genome_fasta_dir}/${genome_fasta_no_spaces%.*} \
  --threads ${threads} \
  --quiet
fi

7 Map reads to genome

Requires genome to be previously indexed with Bowtie.

Additionally, requires user to enter path to their mirdeep2 directory as well as their perl5 installation.

# Load bash variables into memory
source .bashvars

# Append miRDeep2 to system PATH and set PERL5LIB
export PATH=$PATH:/home/shared/mirdeep2/bin
export PERL5LIB=$PERL5LIB:/home/shared/mirdeep2/lib/perl5

# Run miRDeep2 mapping
time \
${mirdeep2_mapper} \
${output_dir_top}/${collapsed_reads_mirdeep2_over17bp} \
-c \
-p ${genome_fasta_dir}/${genome_fasta_no_spaces%.*} \
-t ${output_dir_top}/${mirdeep2_mapping_file} \
-o ${threads}

8 Run miRDeep2

Recommendation is to use the closest related species in the miRDeep2 options, even if the species isn’t very closely related. The documentation indicates that miRDeep2 is always more accurate when at least a species is provided.

The options provided to the command are as follows:

  • none: Known miRNAs of the species being analyzed.
  • -t S.pupuratus: Related species.
  • none: Known miRNA precursors in this species.
  • -P: Specifies miRBase version > 18.
  • -v: Remove temporary files after completion.
  • -g -1: Number of precursors to anlayze. A setting of -1 will analyze all. Default is 50,000 I set this to -1 after multiple attempts to run using the default kept failing.

NOTE: This will take an extremely long time to run (days). Could possible by shortened by excluding randfold analysis.

# Load bash variables into memory
source .bashvars

# Append miRDeep2 to system PATH and set PERL5LIB
export PATH=$PATH:/home/shared/mirdeep2/bin
export PERL5LIB=$PERL5LIB:/home/shared/mirdeep2/lib/perl5

time \
${mirdeep2} \
${output_dir_top}/${collapsed_reads_mirdeep2_over17bp} \
${genome_fasta_dir}/${genome_fasta_no_spaces} \
${output_dir_top}/${mirdeep2_mapping_file} \
none \
${deep_dive_data_dir}/${mirbase_mature_fasta_no_spaces} \
none \
-t S.purpuratus \
-P \
-v \
-g -1 \
2>${output_dir_top}/miRDeep2-S.purpuratus-report.log

8.1 Check runtime

# Load bash variables into memory
source .bashvars

tail -n 6 ${output_dir_top}/miRDeep2-S.purpuratus-report.log
miRDeep runtime: 

started: 15:10:16
ended: 20:38:19
total:29h:28m:3s

9 Move output files to output directory

MiRDeep2 outputs all files to the current working directly with no way to redirect so want to move to intended output directory.

9.1 Move output files

Output files will be in the format of result_* and error_*

# Load bash variables into memory
source .bashvars

for file in result_* error_*
do
  mv "${file}" "${output_dir_top}/"
done

9.2 Identify directories

# Load bash variables into memory
source .bashvars

ls -l | grep "^d"
drwxr-xr-x 3 shedurkin labmembers    4096 Nov  2 08:39 03-Peve-lncRNA-dist_files
drwxr-xr-x 4 shedurkin labmembers    4096 Apr 22 13:18 10.1-Peve-sRNAsea-BLASTn-31bp-fastp-merged-cnidarian_miRBase_cache
drwxr-xr-x 4 shedurkin labmembers    4096 Apr 15 09:11 10.2-Peve-sRNAseq-BLASTn-31bp-fastp-merged_cache

9.3 Rsync directories

# Load bash variables into memory
source .bashvars

rsync -aP . --include='dir***' --exclude='*' --quiet "${output_dir_top}/"

rsync -aP . --include='map***' --exclude='*' --quiet "${output_dir_top}/"

rsync -aP . --exclude='mirgene*' --include='mir***' --exclude='*' --quiet "${output_dir_top}/"

rsync -aP . --include='pdfs***' --exclude='*' --quiet "${output_dir_top}/"

echo ""
echo "Check new location:"
echo ""

ls -l "${output_dir_top}/" | grep "^d"

9.4 Confirm deletion patterns work before deletion!

FYI - eval=FALSE is set because the following command will only work once…

ls --directory dir_* mapper_logs mirdeep_runs mirna_results* pdfs_*

9.5 Remove directores from code directory

# Load bash variables into memory
source .bashvars

rm -rf dir_* mapper_logs mirdeep_runs mirna_results* pdfs_*

9.6 Check to make sure they’re gone

ls --directory dir_* mapper_logs mirdeep_runs mirna_results* pdfs_*
ls: cannot access 'dir_*': No such file or directory
ls: cannot access 'mapper_logs': No such file or directory
ls: cannot access 'mirdeep_runs': No such file or directory
ls: cannot access 'mirna_results*': No such file or directory
ls: cannot access 'pdfs_*': No such file or directory

10 Results

10.1 Peep output file format

The formatting of this CSV is terrible. It has a 3-column table on top of a 17-column table. This makes parsing a bit of a pain in its raw format.

# Load bash variables into memory
source .bashvars


head -n 30 "${output_dir_top}/result_22_04_2024_t_15_10_16.csv"
miRDeep2 score  estimated signal-to-noise   excision gearing
10  6.4 1
9   6.2 1
8   6.1 1
7   5.7 1
6   6.2 1
5   9.1 1
4   7.2 1
3   4.6 1
2   3   1
1   2.3 1
0   1.9 1
-1  1.5 1
-2  1.1 1
-3  0.8 1
-4  0.7 1
-5  0.7 1
-6  0.7 1
-7  0.7 1
-8  0.8 1
-9  0.8 1
-10 0.8 1



novel miRNAs predicted by miRDeep2
provisional id  miRDeep2 score  estimated probability that the miRNA candidate is a true positive   rfam alert  total read count    mature read count   loop read count star read count significant randfold p-value    miRBase miRNA   example miRBase miRNA with the same seed    UCSC browser    NCBI blastn consensus mature sequence   consensus star sequence consensus precursor sequence    precursor coordinate
Porites_evermani_scaffold_1503_530575   110319.9        -   216386  216340  0   46  yes -   -   -   -   ucaggucuaggcugguuaguuu  cuauaccagucuaguccu  cuauaccagucuaguccuggcauguuucuugucaggucuaggcugguuaguuu   Porites_evermani_scaffold_1503:46868..46921:+
Porites_evermani_scaffold_26_42156  46827.4     -   91841   89274   0   2567    yes -   gga-miR-1467-5p_MIMAT0007345_Gallus_gallus_miR-1467-5p  -   -   ucucagcucaccaaucucugcu  cagggacuggugagcugauguc  cagggacuggugagcugaugucauuuacugaucucagcucaccaaucucugcu   Porites_evermani_scaffold_26:382571..382624:-
Porites_evermani_scaffold_910_418426    43145.7     -   84619   84496   0   123 yes -   hsa-miR-33a-3p_MIMAT0004506_Homo_sapiens_miR-33a-3p -   -   caauguuucggcuuguucccg   ggaacaagccgaaacauuuga   caauguuucggcuuguucccguuuucgggaacaagccgaaacauuuga    Porites_evermani_scaffold_910:118741..118789:+

10.2 Create more easily parasable results file

This will match the line beginning with provisional id and print to the end of the file (represented by the $p. $ = end, p = print)

# Load bash variables into memory
source .bashvars


sed --quiet '/provisional id/,$p' "${output_dir_top}/result_22_04_2024_t_15_10_16.csv" \
> "${output_dir_top}/parsable-result_22_04_2024_t_15_10_16.csv"

head "${output_dir_top}/parsable-result_22_04_2024_t_15_10_16.csv"
provisional id  miRDeep2 score  estimated probability that the miRNA candidate is a true positive   rfam alert  total read count    mature read count   loop read count star read count significant randfold p-value    miRBase miRNA   example miRBase miRNA with the same seed    UCSC browser    NCBI blastn consensus mature sequence   consensus star sequence consensus precursor sequence    precursor coordinate
Porites_evermani_scaffold_1503_530575   110319.9        -   216386  216340  0   46  yes -   -   -   -   ucaggucuaggcugguuaguuu  cuauaccagucuaguccu  cuauaccagucuaguccuggcauguuucuugucaggucuaggcugguuaguuu   Porites_evermani_scaffold_1503:46868..46921:+
Porites_evermani_scaffold_26_42156  46827.4     -   91841   89274   0   2567    yes -   gga-miR-1467-5p_MIMAT0007345_Gallus_gallus_miR-1467-5p  -   -   ucucagcucaccaaucucugcu  cagggacuggugagcugauguc  cagggacuggugagcugaugucauuuacugaucucagcucaccaaucucugcu   Porites_evermani_scaffold_26:382571..382624:-
Porites_evermani_scaffold_910_418426    43145.7     -   84619   84496   0   123 yes -   hsa-miR-33a-3p_MIMAT0004506_Homo_sapiens_miR-33a-3p -   -   caauguuucggcuuguucccg   ggaacaagccgaaacauuuga   caauguuucggcuuguucccguuuucgggaacaagccgaaacauuuga    Porites_evermani_scaffold_910:118741..118789:+
Porites_evermani_scaffold_72_87796  31859.5     -   62494   58655   1661    2178    no  -   spi-mir-temp-5_Stylophora_pistillata_Liew_et_al._2014_NA    -   -   gagguccggacgguugaggguuauc   caccccucauccaccaacuugaccucucu   gagguccggacgguugaggguuaucaauuuauacuagucugcucaacuggaauuucugaaccaccccucauccaccaacuugaccucucu  Porites_evermani_scaffold_72:198220..198310:+
Porites_evermani_scaffold_1503_530579   27800.7     -   54522   54405   0   117 yes -   mmu-miR-710_MIMAT0003500_Mus_musculus_miR-710   -   -   ucaagucuaggcugguuaguuu  cuacaccaguguagucuuggca  cuacaccaguguagucuuggcaugcuucuugucaagucuaggcugguuaguuu   Porites_evermani_scaffold_1503:47579..47632:+
Porites_evermani_scaffold_469_286650    23872.2     -   46837   46752   12  73  no  -   mco-miR-12071-5p_MIMAT0046816_Mesocestoides_corti_miR-12071-5p  -   -   uaacgguuuguuucuuccacaaug    ucuguccacuuugcgagccuugcugcug    ucuguccacuuugcgagccuugcugcugaucgagccaacuuuugucuugcauaacgguuuguuucuuccacaaug Porites_evermani_scaffold_469:45430..45505:-
Porites_evermani_scaffold_594_331559    22726.6     -   44568   41387   0   3181    yes -   nve-miR-2023-3p_MIMAT0009756_Nematostella_vectensis_miR-2023-3p -   -   aaagaaguacaagugguaggg   cugccacuuguaucuucuuuca  cugccacuuguaucuucuuucacguuuaucgaugaaagaaguacaagugguaggg Porites_evermani_scaffold_594:158195..158250:+
Porites_evermani_scaffold_253_199635    22568.8     -   44259   38319   0   5940    yes -   osa-miR5539a_MIMAT0022175_Oryza_sativa_miR5539a -   -   uagaaaacucguguacgugacccu    cgcacguagacgaguuuuuaac  cgcacguagacgaguuuuuaacuuuugaugguuagaaaacucguguacgugacccu    Porites_evermani_scaffold_253:200964..201020:+
Porites_evermani_scaffold_577_326309    20195.8     -   39607   39544   0   63  yes -   bmo-miR-3329_MIMAT0015517_Bombyx_mori_miR-3329  -   -   ucauacaauggacaaggaucagg ugauucuuguucuuguuauaaua ugauucuuguucuuguuauaauaauuuuugucauacaauggacaaggaucagg   Porites_evermani_scaffold_577:78358..78411:+

10.3 Read in output CSV

This chunk provides a more convise overview of the data and it’s columns.

mirdeep_result.df <- read.csv("../output/11.1-Peve-sRNAseq-miRdeep2-31bp-fastp-merged-cnidarian_miRBase/parsable-result_22_04_2024_t_15_10_16.csv",
                              header = TRUE,
                              sep = "\t")

str(mirdeep_result.df)
'data.frame':   2616 obs. of  17 variables:
 $ provisional.id                                                   : chr  "Porites_evermani_scaffold_1503_530575" "Porites_evermani_scaffold_26_42156" "Porites_evermani_scaffold_910_418426" "Porites_evermani_scaffold_72_87796" ...
 $ miRDeep2.score                                                   : num  110320 46827 43146 31860 27801 ...
 $ estimated.probability.that.the.miRNA.candidate.is.a.true.positive: logi  NA NA NA NA NA NA ...
 $ rfam.alert                                                       : chr  "-" "-" "-" "-" ...
 $ total.read.count                                                 : int  216386 91841 84619 62494 54522 46837 44568 44259 39607 35129 ...
 $ mature.read.count                                                : int  216340 89274 84496 58655 54405 46752 41387 38319 39544 34380 ...
 $ loop.read.count                                                  : int  0 0 0 1661 0 12 0 0 0 0 ...
 $ star.read.count                                                  : int  46 2567 123 2178 117 73 3181 5940 63 749 ...
 $ significant.randfold.p.value                                     : chr  "yes" "yes" "yes" "no" ...
 $ miRBase.miRNA                                                    : chr  "-" "-" "-" "-" ...
 $ example.miRBase.miRNA.with.the.same.seed                         : chr  "-" "gga-miR-1467-5p_MIMAT0007345_Gallus_gallus_miR-1467-5p" "hsa-miR-33a-3p_MIMAT0004506_Homo_sapiens_miR-33a-3p" "spi-mir-temp-5_Stylophora_pistillata_Liew_et_al._2014_NA" ...
 $ UCSC.browser                                                     : chr  "-" "-" "-" "-" ...
 $ NCBI.blastn                                                      : chr  "-" "-" "-" "-" ...
 $ consensus.mature.sequence                                        : chr  "ucaggucuaggcugguuaguuu" "ucucagcucaccaaucucugcu" "caauguuucggcuuguucccg" "gagguccggacgguugaggguuauc" ...
 $ consensus.star.sequence                                          : chr  "cuauaccagucuaguccu" "cagggacuggugagcugauguc" "ggaacaagccgaaacauuuga" "caccccucauccaccaacuugaccucucu" ...
 $ consensus.precursor.sequence                                     : chr  "cuauaccagucuaguccuggcauguuucuugucaggucuaggcugguuaguuu" "cagggacuggugagcugaugucauuuacugaucucagcucaccaaucucugcu" "caauguuucggcuuguucccguuuucgggaacaagccgaaacauuuga" "gagguccggacgguugaggguuaucaauuuauacuagucugcucaacuggaauuucugaaccaccccucauccaccaacuugaccucucu" ...
 $ precursor.coordinate                                             : chr  "Porites_evermani_scaffold_1503:46868..46921:+" "Porites_evermani_scaffold_26:382571..382624:-" "Porites_evermani_scaffold_910:118741..118789:+" "Porites_evermani_scaffold_72:198220..198310:+" ...

10.4 miRNAs count data

This provides some rudimentary numbers for the miRDeep2 output.

Further analysis is possibly desired to evaluate score thresholds, miRNA families, etc.

# Load bash variables into memory
source .bashvars

# Total predicted miRNAS
total_miRNAs=$(awk 'NR > 1' ${output_dir_top}/parsable-result_22_04_2024_t_15_10_16.csv \
| wc -l
)

echo "Total of predicted miRNAs: ${total_miRNAs}"
echo ""

# Matches to known mature miRNAs
mature_miRNAs=$(awk -F'\t' '$11 != "-" && $11 != "" {print $11}' ${output_dir_top}/parsable-result_22_04_2024_t_15_10_16.csv \
| wc -l
)

echo "Number of seed matches to known miRNAS: ${mature_miRNAs}"
echo ""

# Novel miRNAs
novel_miRNAs=$(awk -F "\t" '$11 == "-" || $11 == "" {print $11}' ${output_dir_top}/parsable-result_22_04_2024_t_15_10_16.csv \
| awk 'NR > 1' \
| wc -l
)

echo "Number of novel miRNAs: ${novel_miRNAs}"
Total of predicted miRNAs: 2616

Number of seed matches to known miRNAS: 2300

Number of novel miRNAs: 316
Friedländer, Marc R., Sebastian D. Mackowiak, Na Li, Wei Chen, and Nikolaus Rajewsky. 2011. “miRDeep2 Accurately Identifies Known and Hundreds of Novel microRNA Genes in Seven Animal Clades.” Nucleic Acids Research 40 (1): 37–52. https://doi.org/10.1093/nar/gkr688.
LS0tCnRpdGxlOiAiMTEuMS1QZXZlLXNSTkFzZXEtbWlSZGVlcDItMzFicC1mYXN0cC1tZXJnZWQtY25pZGFyaWFuX21pUkJhc2UiCmF1dGhvcjogIkthdGhsZWVuIER1cmtpbiIKZGF0ZTogIjIwMjQtMDQtMTIiCm91dHB1dDogCiAgYm9va2Rvd246Omh0bWxfZG9jdW1lbnQyOgogICAgdGhlbWU6IGNvc21vCiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCiAgICBjb2RlX2ZvbGRpbmc6IHNob3cKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKICBnaXRodWJfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogIGh0bWxfZG9jdW1lbnQ6CiAgICB0aGVtZTogY29zbW8KICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGNvZGVfZm9sZGluZzogc2hvdwogICAgY29kZV9kb3dubG9hZDogdHJ1ZQpiaWJsaW9ncmFwaHk6IHJlZmVyZW5jZXMuYmliCmxpbmstY2l0YXRpb25zOiB0cnVlCi0tLQoKClVzZSBbbWlSRGVlcDJdKGh0dHBzOi8vZ2l0aHViLmNvbS9yYWpld3NreS1sYWIvbWlyZGVlcDIpIFtAZnJpZWRsw6RuZGVyMjAxMV0gdG8gaWRlbnRpZnkgcG90ZW50aWFsIG1pUk5BcyB1c2luZyBfUC5ldmVybWFubmlfIHNSTkFzZXEgcmVhZHMuCgotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KCklucHV0czoKCi0gICBSZXF1aXJlcyBjb2xsYXBzZWQgcmVhZHMgKGkuZS4gY29uY2F0ZW5hdGVkLCB1bmlxdWUgcmVhZHMpIGluIEZhc3RBIGZvcm1hdC4gU2VlIFsxMC4yLVBldmUtc1JOQXNlcS1CTEFTVG4tMzFicC1mYXN0cC1tZXJnZWQuUm1kXShodHRwczovL2dpdGh1Yi5jb20vdXJvbC1lNS9kZWVwLWRpdmUvYmxvYi9tYWluL0UtUGV2ZS9jb2RlLzEwLjItUGV2ZS1zUk5Bc2VxLUJMQVNUbi0zMWJwLWZhc3RwLW1lcmdlZC5SbWQpIGZvciBjb2RlLgoKLSAgIEdlbm9tZSBGYXN0QS4gU2VlIFswNy1QZXZlLXNSTkFzZXEtTWlyTWFjaGluZS5SbWRdKGh0dHBzOi8vZ2l0aHViLmNvbS91cm9sLWU1L2RlZXAtZGl2ZS9ibG9iL21haW4vRS1QZXZlL2NvZGUvMDctUGV2ZS1zUk5Bc2VxLU1pck1hY2hpbmUuUm1kKSBmb3IgZG93bmxvYWQgaW5mbyBpZiBuZWVkZWQuCgotIFttaVJCYXNlXShodHRwczovL21pcmJhc2Uub3JnL2Rvd25sb2FkLykgbWF0dXJlIG1pUk5BcyBGYXN0QS4KICAgIC0gICBVdGlsaXplcyBhIG1vZGlmaWVkIHZlcnNpb24sIHdoaWNoIGluY2x1ZGVzIGNuaWRhcmlhbiBtaVJOQSBjdWxsZWQgZnJvbSBsaXRlcmF0dXJlIGJ5IEppbGwgQWhzbGV5LgoKICAgIC0gICBbYGNuaWRhcmlhbi1taXJiYXNlLW1hdHVyZS12MjIuMS5mYXN0YWBdKC4uLy4uL2RhdGEvY25pZGFyaWFuLW1pcmJhc2UtbWF0dXJlLXYyMi4xLmZhc3RhKQoKT3V0cHV0czoKCi0gICBQcmltYXJ5IG91dHB1dHMgYXJlIGEgcmVzdWx0IHRhYmxlIGluIEJFRCwgQ1NWICh0YWItZGVsaW1pdGVkKSwgYW5kIEhUTUwgZm9ybWF0cy4KCiAgLSBEdWUgdG8gdGhlIG5hdHVyZSBvZiBtaXJEZWVwMidzIG5hbWluZywgdHJ5aW5nIHRvIHVzZSB2YXJpYWJsZSBuYW1lcyBpcyBjaGFsbGVuZ2luZy4gQXMgc3VjaCwgdGhlIGNodW5rcyBwcm9jZXNzaW5nIHRob3NlIGZpbGVzIHdpbGwgcmVxdWlyZSBtYW51YWwgaW50ZXJ2ZW50aW9uIHRvIGlkZW50aWZ5IGFuZCBwcm92aWRlIHRoZSBvdXRwdXQgZmlsZW5hbWUocyk7IHRoZXkgYXJlIF9ub3RfIGhhbmRsZWQgYXQgaW4gdGhlIGAuYmFzaHZhcnNgIGZpbGUgYXQgdGhlIHRvcCBvZiB0aGlzIHNjcmlwdC4KICAKLSBPdGhlciBvdXRwdXQgZmlsZXMgYXJlIHRvbyBsYXJnZSBmb3IgR2l0SHViIChhbmQgc29tZSAoYWxsPykgYXJlIG5vdCBuZWVkZWQgZm9yIHRoaXMgYW5hbHlzaXMpLiBQbGVhc2UgZmluZCBhIGZ1bGwgYmFja3VwIGhlcmU6CgoKCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoa25pdHIpCmxpYnJhcnkoa2FibGVFeHRyYSkKbGlicmFyeShkcGx5cikKbGlicmFyeShyZXRpY3VsYXRlKQprbml0cjo6b3B0c19jaHVuayRzZXQoCiAgZWNobyA9IFRSVUUsICAgICAgICAgIyBEaXNwbGF5IGNvZGUgY2h1bmtzCiAgZXZhbCA9IEZBTFNFLCAgICAgICAgIyBFdmFsdWF0ZSBjb2RlIGNodW5rcwogIHdhcm5pbmcgPSBGQUxTRSwgICAgICMgSGlkZSB3YXJuaW5ncwogIG1lc3NhZ2UgPSBGQUxTRSwgICAgICMgSGlkZSBtZXNzYWdlcwogIGNvbW1lbnQgPSAiIiwgICAgICAgICMgUHJldmVudHMgYXBwZW5kaW5nICcjIycgdG8gYmVnaW5uaW5nIG9mIGxpbmVzIGluIGNvZGUgb3V0cHV0CiAgd2lkdGggPSAxMDAwICAgICAgICAgIyBhZGRzIHNjcm9sbCBiYXIKKQpgYGAKCiMgQ3JlYXRlIGEgQmFzaCB2YXJpYWJsZXMgZmlsZQoKVGhpcyBhbGxvd3MgdXNhZ2Ugb2YgQmFzaCB2YXJpYWJsZXMgYWNyb3NzIFIgTWFya2Rvd24gY2h1bmtzLgoKYGBge3Igc2F2ZS1iYXNoLXZhcmlhYmxlcy10by1ydmFycy1maWxlLCBlbmdpbmU9J2Jhc2gnLCBldmFsPVRSVUV9CnsKZWNobyAiIyMjIyBBc3NpZ24gVmFyaWFibGVzICMjIyMiCmVjaG8gIiIKCmVjaG8gIiMgVHJpbW1lZCBGYXN0USBuYW1pbmcgcGF0dGVybiIKZWNobyAiZXhwb3J0IHRyaW1tZWRfZmFzdHFzX3BhdHRlcm49JyotMzFicC1tZXJnZWQuZnEuZ3onIgplY2hvICIiCgplY2hvICIjIERhdGEgZGlyZWN0b3JpZXMiCmVjaG8gJ2V4cG9ydCBkZWVwX2RpdmVfZGlyPS9ob21lL3NoYXJlZC84VEJfSEREXzAyL3NoZWR1cmtpbi9kZWVwLWRpdmUnCmVjaG8gJ2V4cG9ydCBkZWVwX2RpdmVfZGF0YV9kaXI9IiR7ZGVlcF9kaXZlX2Rpcn0vZGF0YSInCmVjaG8gJ2V4cG9ydCBvdXRwdXRfZGlyX3RvcD0ke2RlZXBfZGl2ZV9kaXJ9L0UtUGV2ZS9vdXRwdXQvMTEuMS1QZXZlLXNSTkFzZXEtbWlSZGVlcDItMzFicC1mYXN0cC1tZXJnZWQtY25pZGFyaWFuX21pUkJhc2UnCmVjaG8gJ2V4cG9ydCBnZW5vbWVfZmFzdGFfZGlyPSR7ZGVlcF9kaXZlX2Rpcn0vRS1QZXZlL2RhdGEnCmVjaG8gJ2V4cG9ydCB0cmltbWVkX2Zhc3Rxc19kaXI9IiR7ZGVlcF9kaXZlX2Rpcn0vRS1QZXZlL291dHB1dC8wNi4yLVBldmUtc1JOQXNlcS10cmltbWluZy0zMWJwLWZhc3RwLW1lcmdlZC90cmltbWVkLXJlYWRzIicKZWNobyAnZXhwb3J0IGNvbGxhcHNlZF9yZWFkc19kaXI9IiR7ZGVlcF9kaXZlX2Rpcn0vRS1QZXZlL291dHB1dC8xMC4yLVBldmUtc1JOQXNlcS1CTEFTVG4tMzFicC1mYXN0cC1tZXJnZWQiJwplY2hvICIiCgplY2hvICIjIElucHV0L091dHB1dCBmaWxlcyIKZWNobyAnZXhwb3J0IGNvbGxhcHNlZF9yZWFkc19mYXN0YT0iY29sbGFwc2VkLXJlYWRzLWFsbC5mYXN0YSInCmVjaG8gJ2V4cG9ydCBjb2xsYXBzZWRfcmVhZHNfbWlyZGVlcDI9ImNvbGxhcHNlZC1yZWFkcy1hbGwtbWlyZGVlcDIuZmFzdGEiJwplY2hvICdleHBvcnQgY29sbGFwc2VkX3JlYWRzX21pcmRlZXAyX292ZXIxN2JwPSJjb2xsYXBzZWQtcmVhZHMtb3ZlcjE3YnAtbWlyZGVlcDIuZmFzdGEiJwplY2hvICdleHBvcnQgY29uY2F0ZW5hdGVkX3RyaW1tZWRfcmVhZHNfZmFzdHE9ImNvbmNhdGVuYXRlZC10cmltbWVkLXJlYWRzLWFsbC5mYXN0cS5neiInCmVjaG8gJ2V4cG9ydCBnZW5vbWVfZmFzdGFfbmFtZT0iUG9yaXRlc19ldmVybWFubmlfdjEuZmEiJwplY2hvICdleHBvcnQgZ2Vub21lX2Zhc3RhX25vX3NwYWNlcz0iUG9yaXRlc19ldmVybWFubmlfdjFfZ2Vub21pYy1ub19zcGFjZXMuZm5hIicKZWNobyAnZXhwb3J0IG1pcmRlZXAyX21hcHBpbmdfZmlsZT0iUGV2ZS1taXJkZWVwMi1tYXBwaW5nLmFyZiInCmVjaG8gJ2V4cG9ydCBtaXJiYXNlX21hdHVyZV9mYXN0YV9uYW1lPSJjbmlkYXJpYW4tbWlyYmFzZS1tYXR1cmUtdjIyLjEuZmFzdGEiJwplY2hvICdleHBvcnQgbWlyYmFzZV9tYXR1cmVfZmFzdGFfbm9fc3BhY2VzPSJjbmlkYXJpYW4tbWlyYmFzZS1tYXR1cmUtdjIyLjEtbm9fc3BhY2VzLmZhIicKZWNobyAiIgoKCmVjaG8gIiMgUGF0aHMgdG8gcHJvZ3JhbXMiCmVjaG8gJ2V4cG9ydCBtaXJkZWVwMl9tYXBwZXI9Im1hcHBlci5wbCInCmVjaG8gJ2V4cG9ydCBtaXJkZWVwMj0ibWlSRGVlcDIucGwiJwplY2hvICdleHBvcnQgYm93dGllX2J1aWxkPSIvaG9tZS9zaGFyZWQvYm93dGllLTEuMy4xLWxpbnV4LXg4Nl82NC9ib3d0aWUtYnVpbGQiJwplY2hvICIiCgplY2hvICIjIFNldCBudW1iZXIgb2YgQ1BVcyB0byB1c2UiCmVjaG8gJ2V4cG9ydCB0aHJlYWRzPTQ2JwplY2hvICIiCgplY2hvICIjIEluaXRpYWxpemUgYXJyYXlzIgplY2hvICdleHBvcnQgdHJpbW1lZF9mYXN0cXNfYXJyYXk9KCknCgoKfSA+IC5iYXNodmFycwoKY2F0IC5iYXNodmFycwpgYGAKCiMgUHJlcGFyZSByZWFkcyBmb3IgbWlSRGVlcDIKClBlciBtaVJEZWVwMiBkb2N1bWVudGF0aW9uOgoKPiBUaGUgcmVhZElEIG11c3QgZW5kIHdpdGggXF94TnVtYmVyIGFuZCBpcyBub3QgYWxsb3dlZCB0byBjb250YWluCj4gd2hpdGVzcGFjZXMuIGhhcyB0byBoYXZlIHRoZSBmb3JtYXQgbmFtZV91bmlxdWVOdW1iZXJfeG51bWJlcgoKYGBge3IgcmVmb3JtYXQtcmVhZC1JRHMsIGV2YWw9VFJVRSwgZW5naW5lPSdiYXNoJ30KIyBMb2FkIGJhc2ggdmFyaWFibGVzIGludG8gbWVtb3J5CnNvdXJjZSAuYmFzaHZhcnMKCgpzZWQgJy9ePi8gcy8tL194L2cnICIke2NvbGxhcHNlZF9yZWFkc19kaXJ9LyR7Y29sbGFwc2VkX3JlYWRzX2Zhc3RhfSIgXAp8IHNlZCAnL14+LyBzLz4vPnNlcV8vJyBcCj4gIiR7b3V0cHV0X2Rpcl90b3B9LyR7Y29sbGFwc2VkX3JlYWRzX21pcmRlZXAyfSIKCmdyZXAgIl4+IiAke2NvbGxhcHNlZF9yZWFkc19kaXJ9LyR7Y29sbGFwc2VkX3JlYWRzX2Zhc3RhfSBcCnwgaGVhZAoKZWNobyAiIgplY2hvICItLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSIKZWNobyAiIgoKZ3JlcCAiXj4iICR7b3V0cHV0X2Rpcl90b3B9LyR7Y29sbGFwc2VkX3JlYWRzX21pcmRlZXAyfSBcCnwgaGVhZApgYGAKCiMgRmlsdGVyIG91dCBzZXF1ZW5jZXMgPDE3YnAgaW4gbGVuZ3RoCgptaXJEZWVwMiBvbmx5IGFjY2VwdHMgc2VxdWVuY2VzIGF0IGxlYXN0IDE3YnAgbG9uZwoKYGBge3IgZmlsdGVyLWZvci1vdmVyLTE3YnAsIGV2YWw9RkFMU0UsIGVuZ2luZT0nYmFzaCd9CiMgTG9hZCBiYXNoIHZhcmlhYmxlcyBpbnRvIG1lbW9yeQpzb3VyY2UgLmJhc2h2YXJzCgojIE9ubHkgZG8gdGhpcyBpZiB5b3UgaGF2ZW4ndCBhbHJlYWR5IGZpbHRlcmVkIGJ5IHNpemUKaWYgWyAhIC1lICIke291dHB1dF9kaXJfdG9wfS8ke2NvbGxhcHNlZF9yZWFkc19taXJkZWVwMl9vdmVyMTdicH0iIF07IHRoZW4KIyBMb29wIHRocm91Z2ggdGhlIGZpbGUKICB3aGlsZSBJRlM9IHJlYWQgLXIgbGluZSB8fCBbWyAtbiAiJGxpbmUiIF1dOyBkbwojICAgIGVjaG8gImNoZWNraW5nIGxpbmUgJGxpbmUiCiAgICAjIENoZWNrIGlmIHRoZSBsaW5lIGNvbnRhaW5zIGEgc2VxdWVuY2UgSUQKICAgIGlmIFtbICIkbGluZSIgPT0gIj4iKiBdXTsgdGhlbgogICAgICAgIHNlcXVlbmNlX2lkPSIkbGluZSIKICAgICAgICByZWFkIC1yIHNlcXVlbmNlX2xpbmUKICAgICAgICAjIENoZWNrIGlmIHRoZSBzZXF1ZW5jZSBsZW5ndGggaXMgZ3JlYXRlciB0aGFuIG9yIGVxdWFsIHRvIDE3CiAgICAgICAgaWYgWyAkeyNzZXF1ZW5jZV9saW5lfSAtZ2UgMTcgXTsgdGhlbgogICAgICAgICAgICAjZWNobyAiV3JpdGluZyB0byBmaWx0ZXJlZF9zZXF1ZW5jZXNfbG9uZy50eHQ6ICRzZXF1ZW5jZV9pZCIKICAgICAgICAgICAgZWNobyAiJHNlcXVlbmNlX2lkIiA+PiAiJHtvdXRwdXRfZGlyX3RvcH0vJHtjb2xsYXBzZWRfcmVhZHNfbWlyZGVlcDJfb3ZlcjE3YnB9IgogICAgICAgICAgICBlY2hvICIkc2VxdWVuY2VfbGluZSIgPj4gIiR7b3V0cHV0X2Rpcl90b3B9LyR7Y29sbGFwc2VkX3JlYWRzX21pcmRlZXAyX292ZXIxN2JwfSIKICAgICAgICBlbHNlCiAgICAgICAgICAgICNlY2hvICJXcml0aW5nIHRvIGZpbHRlcmVkX3NlcXVlbmNlc19zaG9ydC50eHQ6ICRzZXF1ZW5jZV9pZCIKICAgICAgICAgICAgZWNobyAiJHNlcXVlbmNlX2lkIiA+PiAiJHtvdXRwdXRfZGlyX3RvcH0vbGVzc190aGFuXzE3YnAuZmFzdGEiCiAgICAgICAgICAgIGVjaG8gIiRzZXF1ZW5jZV9saW5lIiA+PiAiJHtvdXRwdXRfZGlyX3RvcH0vbGVzc190aGFuXzE3YnAuZmFzdGEiCiAgICAgICAgZmkKICAgIGZpCiAgZG9uZSA8ICIke291dHB1dF9kaXJfdG9wfS8ke2NvbGxhcHNlZF9yZWFkc19taXJkZWVwMn0iCmZpCgp3YyAtbCAke291dHB1dF9kaXJfdG9wfS8ke2NvbGxhcHNlZF9yZWFkc19taXJkZWVwMn0Kd2MgLWwgJHtvdXRwdXRfZGlyX3RvcH0vJHtjb2xsYXBzZWRfcmVhZHNfbWlyZGVlcDJfb3ZlcjE3YnB9CmhlYWQgJHtvdXRwdXRfZGlyX3RvcH0vbGVzc190aGFuXzE3YnAuZmFzdGEKYGBgCgoKIyBSZWZvcm1hdCBnZW5vbWUgRmFzdEEgZGVzY3JpcHRpb24gbGluZXMKCm1pUkRlZXAyIGNhbid0IHByb2Nlc3MgZ2Vub21lIEZhc3RBcyB3aXRoIHNwYWNlcyBpbiB0aGUgZGVzY3JpcHRpb24KbGluZXMuCgpTbywgSSdtIHJlcGxhY2luZyBzcGFjZXMgd2l0aCB1bmRlcnNjb3Jlcy4KCkFuZCwgZm9yIGFlc3RoZXRpY3MsIEknbSBhbHNvIHJlbW92aW5nIGNvbW1hcy4KCmBgYHtyIHJlbW92ZS1zcGFjZXMtZ2Vub21lLUZhc3RBLCBldmFsPVRSVUUsIGVuZ2luZT0nYmFzaCd9CiMgTG9hZCBiYXNoIHZhcmlhYmxlcyBpbnRvIG1lbW9yeQpzb3VyY2UgLmJhc2h2YXJzCgoKc2VkICcvXj4vIHMvIC9fL2cnICIke2dlbm9tZV9mYXN0YV9kaXJ9LyR7Z2Vub21lX2Zhc3RhX25hbWV9IiBcCnwgc2VkICcvXj4vIHMvLC8vZycgXAo+ICIke2dlbm9tZV9mYXN0YV9kaXJ9LyR7Z2Vub21lX2Zhc3RhX25vX3NwYWNlc30iCgpncmVwICJePiIgJHtnZW5vbWVfZmFzdGFfZGlyfS8ke2dlbm9tZV9mYXN0YV9uYW1lfSBcCnwgaGVhZAoKZWNobyAiIgplY2hvICItLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSIKZWNobyAiIgoKZ3JlcCAiXj4iICR7Z2Vub21lX2Zhc3RhX2Rpcn0vJHtnZW5vbWVfZmFzdGFfbm9fc3BhY2VzfSBcCnwgaGVhZApgYGAKCiMgUmVmb3JtYXQgbWlSQmFzZSBGYXN0QSBkZXNjcmlwdGlvbiBsaW5lcwoKYGBge3IgcmVtb3ZlLXNwYWNlcy1taXJiYXNlLUZhc3RBLCBldmFsPVRSVUUsIGVuZ2luZT0nYmFzaCd9CiMgTG9hZCBiYXNoIHZhcmlhYmxlcyBpbnRvIG1lbW9yeQpzb3VyY2UgLmJhc2h2YXJzCgoKc2VkICcvXj4vIHMvIC9fL2cnICIke2RlZXBfZGl2ZV9kYXRhX2Rpcn0vJHttaXJiYXNlX21hdHVyZV9mYXN0YV9uYW1lfSIgXAp8IHNlZCAnL14+LyBzLywvL2cnIFwKPiAiJHtkZWVwX2RpdmVfZGF0YV9kaXJ9LyR7bWlyYmFzZV9tYXR1cmVfZmFzdGFfbm9fc3BhY2VzfSIKCmdyZXAgIl4+IiAke2RlZXBfZGl2ZV9kYXRhX2Rpcn0vJHttaXJiYXNlX21hdHVyZV9mYXN0YV9uYW1lfSBcCnwgaGVhZAoKZWNobyAiIgplY2hvICItLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSIKZWNobyAiIgoKZ3JlcCAiXj4iICR7ZGVlcF9kaXZlX2RhdGFfZGlyfS8ke21pcmJhc2VfbWF0dXJlX2Zhc3RhX25vX3NwYWNlc30gXAp8IGhlYWQKYGBgCgojIEJvd3RpZSB2MSBnZW5vbWUgaW5kZXgKCm1pUkRlZXAyIHJlcXVpcmVzIGEgQm93dGllIHYxIGdlbm9tZSBpbmRleCAtIGNhbm5vdCB1c2UgQm93dGllMiBpbmRleAoKYGBge3IgYm93dGllMS1pbmRleCwgZXZhbD1GQUxTRSwgZW5naW5lPSdiYXNoJ30KIyBMb2FkIGJhc2ggdmFyaWFibGVzIGludG8gbWVtb3J5CnNvdXJjZSAuYmFzaHZhcnMKCiMgQ2hlY2sgZm9yIGV4aXN0ZW5jZSBvZiBnZW5vbWUgaW5kZXggZmlyc3QKaWYgWyAhIC1mICIke2dlbm9tZV9mYXN0YV9ub19zcGFjZXMlLip9LmVid3QiIF07IHRoZW4KICAke2Jvd3RpZV9idWlsZH0gXAogICR7Z2Vub21lX2Zhc3RhX2Rpcn0vJHtnZW5vbWVfZmFzdGFfbm9fc3BhY2VzfSBcCiAgJHtnZW5vbWVfZmFzdGFfZGlyfS8ke2dlbm9tZV9mYXN0YV9ub19zcGFjZXMlLip9IFwKICAtLXRocmVhZHMgJHt0aHJlYWRzfSBcCiAgLS1xdWlldApmaQpgYGAKCiMgTWFwIHJlYWRzIHRvIGdlbm9tZQoKUmVxdWlyZXMgZ2Vub21lIHRvIGJlIHByZXZpb3VzbHkgaW5kZXhlZCB3aXRoIEJvd3RpZS4KCkFkZGl0aW9uYWxseSwgcmVxdWlyZXMgdXNlciB0byBlbnRlciBwYXRoIHRvIHRoZWlyIGBtaXJkZWVwMmAgZGlyZWN0b3J5IGFzIHdlbGwKYXMgdGhlaXIgYHBlcmw1YCBpbnN0YWxsYXRpb24uCgpgYGB7ciBtYXAtcmVhZC1nZW5vbWUsIGV2YWw9RkFMU0UsIGVuZ2luZT0nYmFzaCd9CiMgTG9hZCBiYXNoIHZhcmlhYmxlcyBpbnRvIG1lbW9yeQpzb3VyY2UgLmJhc2h2YXJzCgojIEFwcGVuZCBtaVJEZWVwMiB0byBzeXN0ZW0gUEFUSCBhbmQgc2V0IFBFUkw1TElCCmV4cG9ydCBQQVRIPSRQQVRIOi9ob21lL3NoYXJlZC9taXJkZWVwMi9iaW4KZXhwb3J0IFBFUkw1TElCPSRQRVJMNUxJQjovaG9tZS9zaGFyZWQvbWlyZGVlcDIvbGliL3Blcmw1CgojIFJ1biBtaVJEZWVwMiBtYXBwaW5nCnRpbWUgXAoke21pcmRlZXAyX21hcHBlcn0gXAoke291dHB1dF9kaXJfdG9wfS8ke2NvbGxhcHNlZF9yZWFkc19taXJkZWVwMl9vdmVyMTdicH0gXAotYyBcCi1wICR7Z2Vub21lX2Zhc3RhX2Rpcn0vJHtnZW5vbWVfZmFzdGFfbm9fc3BhY2VzJS4qfSBcCi10ICR7b3V0cHV0X2Rpcl90b3B9LyR7bWlyZGVlcDJfbWFwcGluZ19maWxlfSBcCi1vICR7dGhyZWFkc30KYGBgCgojIFJ1biBtaVJEZWVwMgoKUmVjb21tZW5kYXRpb24gaXMgdG8gdXNlIHRoZSBjbG9zZXN0IHJlbGF0ZWQgc3BlY2llcyBpbiB0aGUgbWlSRGVlcDIgb3B0aW9ucywgZXZlbgppZiB0aGUgc3BlY2llcyBpc24ndCB2ZXJ5IGNsb3NlbHkgcmVsYXRlZC4gVGhlIGRvY3VtZW50YXRpb24gaW5kaWNhdGVzIHRoYXQgbWlSRGVlcDIKaXMgYWx3YXlzIG1vcmUgYWNjdXJhdGUgd2hlbiBhdCBsZWFzdCBhIHNwZWNpZXMgaXMgcHJvdmlkZWQuCgpUaGUgb3B0aW9ucyBwcm92aWRlZCB0byB0aGUgY29tbWFuZCBhcmUgYXMgZm9sbG93czoKCi0gYG5vbmVgOiBLbm93biBtaVJOQXMgb2YgdGhlIHNwZWNpZXMgYmVpbmcgYW5hbHl6ZWQuCi0gYC10IFMucHVwdXJhdHVzYDogUmVsYXRlZCBzcGVjaWVzLgotIGBub25lYDogS25vd24gbWlSTkEgcHJlY3Vyc29ycyBpbiB0aGlzIHNwZWNpZXMuCi0gYC1QYDogU3BlY2lmaWVzIG1pUkJhc2UgdmVyc2lvbiA+IDE4LgotIGAtdmA6IFJlbW92ZSB0ZW1wb3JhcnkgZmlsZXMgYWZ0ZXIgY29tcGxldGlvbi4KLSBgLWcgLTFgOiBOdW1iZXIgb2YgcHJlY3Vyc29ycyB0byBhbmxheXplLiBBIHNldHRpbmcgb2YgYC0xYCB3aWxsIGFuYWx5emUgYWxsLiBEZWZhdWx0IGlzIDUwLDAwMApJIHNldCB0aGlzIHRvIGAtMWAgYWZ0ZXIgbXVsdGlwbGUgYXR0ZW1wdHMgdG8gcnVuIHVzaW5nIHRoZSBkZWZhdWx0IGtlcHQgZmFpbGluZy4KCk5PVEU6IFRoaXMgd2lsbCB0YWtlIGFuIF9leHRyZW1lbHlfIGxvbmcgdGltZSB0byBydW4gKGRheXMpLiBDb3VsZCBwb3NzaWJsZSBieSBzaG9ydGVuZWQgYnkKZXhjbHVkaW5nIGByYW5kZm9sZGAgYW5hbHlzaXMuCgoKYGBge3IgbWlyZGVlcDIsIGV2YWw9RkFMU0UsIGVuZ2luZT0nYmFzaCd9CiMgTG9hZCBiYXNoIHZhcmlhYmxlcyBpbnRvIG1lbW9yeQpzb3VyY2UgLmJhc2h2YXJzCgojIEFwcGVuZCBtaVJEZWVwMiB0byBzeXN0ZW0gUEFUSCBhbmQgc2V0IFBFUkw1TElCCmV4cG9ydCBQQVRIPSRQQVRIOi9ob21lL3NoYXJlZC9taXJkZWVwMi9iaW4KZXhwb3J0IFBFUkw1TElCPSRQRVJMNUxJQjovaG9tZS9zaGFyZWQvbWlyZGVlcDIvbGliL3Blcmw1Cgp0aW1lIFwKJHttaXJkZWVwMn0gXAoke291dHB1dF9kaXJfdG9wfS8ke2NvbGxhcHNlZF9yZWFkc19taXJkZWVwMl9vdmVyMTdicH0gXAoke2dlbm9tZV9mYXN0YV9kaXJ9LyR7Z2Vub21lX2Zhc3RhX25vX3NwYWNlc30gXAoke291dHB1dF9kaXJfdG9wfS8ke21pcmRlZXAyX21hcHBpbmdfZmlsZX0gXApub25lIFwKJHtkZWVwX2RpdmVfZGF0YV9kaXJ9LyR7bWlyYmFzZV9tYXR1cmVfZmFzdGFfbm9fc3BhY2VzfSBcCm5vbmUgXAotdCBTLnB1cnB1cmF0dXMgXAotUCBcCi12IFwKLWcgLTEgXAoyPiR7b3V0cHV0X2Rpcl90b3B9L21pUkRlZXAyLVMucHVycHVyYXR1cy1yZXBvcnQubG9nCmBgYAoKIyMgQ2hlY2sgcnVudGltZQoKYGBge3IgcnVudGltZS1taXJkZWVwMiwgZXZhbD1UUlVFLCBlbmdpbmU9J2Jhc2gnfQojIExvYWQgYmFzaCB2YXJpYWJsZXMgaW50byBtZW1vcnkKc291cmNlIC5iYXNodmFycwoKdGFpbCAtbiA2ICR7b3V0cHV0X2Rpcl90b3B9L21pUkRlZXAyLVMucHVycHVyYXR1cy1yZXBvcnQubG9nCmBgYAoKIyBNb3ZlIG91dHB1dCBmaWxlcyB0byBvdXRwdXQgZGlyZWN0b3J5CgpNaVJEZWVwMiBvdXRwdXRzIGFsbCBmaWxlcyB0byB0aGUgY3VycmVudCB3b3JraW5nIGRpcmVjdGx5IHdpdGggbm8gd2F5CnRvIHJlZGlyZWN0IHNvIHdhbnQgdG8gbW92ZSB0byBpbnRlbmRlZCBvdXRwdXQgZGlyZWN0b3J5LgoKIyMgTW92ZSBvdXRwdXQgZmlsZXMKCk91dHB1dCBmaWxlcyB3aWxsIGJlIGluIHRoZSBmb3JtYXQgb2YgYHJlc3VsdF8qYCBhbmQgYGVycm9yXypgCgpgYGB7ciBtb3ZlLW1pcmRlZXAyLW91dHB1dC1maWxlcywgZXZhbD1GQUxTRSwgZW5naW5lPSdiYXNoJ30KIyBMb2FkIGJhc2ggdmFyaWFibGVzIGludG8gbWVtb3J5CnNvdXJjZSAuYmFzaHZhcnMKCmZvciBmaWxlIGluIHJlc3VsdF8qIGVycm9yXyoKZG8KICBtdiAiJHtmaWxlfSIgIiR7b3V0cHV0X2Rpcl90b3B9LyIKZG9uZQpgYGAKCiMjIElkZW50aWZ5IGRpcmVjdG9yaWVzCgpgYGB7ciBpZGVudGlmeS1taXJkZWVwMi1vdXRwdXQtZGlycywgZXZhbD1UUlVFLCBlbmdpbmU9J2Jhc2gnfQojIExvYWQgYmFzaCB2YXJpYWJsZXMgaW50byBtZW1vcnkKc291cmNlIC5iYXNodmFycwoKbHMgLWwgfCBncmVwICJeZCIKYGBgCgojIyBSc3luYyBkaXJlY3RvcmllcwoKYGBge3IgcnN5bmMtbWlyZGVlcDItb3V0cHV0LWZpbGVzLCBldmFsPUZBTFNFLCBlbmdpbmU9J2Jhc2gnfQojIExvYWQgYmFzaCB2YXJpYWJsZXMgaW50byBtZW1vcnkKc291cmNlIC5iYXNodmFycwoKcnN5bmMgLWFQIC4gLS1pbmNsdWRlPSdkaXIqKionIC0tZXhjbHVkZT0nKicgLS1xdWlldCAiJHtvdXRwdXRfZGlyX3RvcH0vIgoKcnN5bmMgLWFQIC4gLS1pbmNsdWRlPSdtYXAqKionIC0tZXhjbHVkZT0nKicgLS1xdWlldCAiJHtvdXRwdXRfZGlyX3RvcH0vIgoKcnN5bmMgLWFQIC4gLS1leGNsdWRlPSdtaXJnZW5lKicgLS1pbmNsdWRlPSdtaXIqKionIC0tZXhjbHVkZT0nKicgLS1xdWlldCAiJHtvdXRwdXRfZGlyX3RvcH0vIgoKcnN5bmMgLWFQIC4gLS1pbmNsdWRlPSdwZGZzKioqJyAtLWV4Y2x1ZGU9JyonIC0tcXVpZXQgIiR7b3V0cHV0X2Rpcl90b3B9LyIKCmVjaG8gIiIKZWNobyAiQ2hlY2sgbmV3IGxvY2F0aW9uOiIKZWNobyAiIgoKbHMgLWwgIiR7b3V0cHV0X2Rpcl90b3B9LyIgfCBncmVwICJeZCIKCgpgYGAKCiMjIENvbmZpcm0gZGVsZXRpb24gcGF0dGVybnMgd29yayAqYmVmb3JlKiBkZWxldGlvbiEKCkZZSSAtIGBldmFsPUZBTFNFYCBpcyBzZXQgYmVjYXVzZSB0aGUgZm9sbG93aW5nIGNvbW1hbmQgd2lsbCBvbmx5IHdvcmsKb25jZS4uLgoKYGBge3IgdGVzdC1kZWxldGlvbi1wYXR0ZXJucywgZXZhbD1GQUxTRSwgZW5naW5lPSdiYXNoJ30KbHMgLS1kaXJlY3RvcnkgZGlyXyogbWFwcGVyX2xvZ3MgbWlyZGVlcF9ydW5zIG1pcm5hX3Jlc3VsdHMqIHBkZnNfKgpgYGAKCiMjIFJlbW92ZSBkaXJlY3RvcmVzIGZyb20gY29kZSBkaXJlY3RvcnkKCmBgYHtyIHJlbW92ZS1taXJkZWVwMi1vdXRwdXQtZGlycywgZXZhbD1GQUxTRSwgZW5naW5lPSdiYXNoJ30KIyBMb2FkIGJhc2ggdmFyaWFibGVzIGludG8gbWVtb3J5CnNvdXJjZSAuYmFzaHZhcnMKCnJtIC1yZiBkaXJfKiBtYXBwZXJfbG9ncyBtaXJkZWVwX3J1bnMgbWlybmFfcmVzdWx0cyogcGRmc18qCgpgYGAKCiMjIENoZWNrIHRvIG1ha2Ugc3VyZSB0aGV5J3JlIGdvbmUKCmBgYHtyIGNoZWNrLWRlbGV0aW9uLXN1Y2Nlc3MsIGV2YWw9VFJVRSwgZW5naW5lPSdiYXNoJywgZXJyb3I9VFJVRX0KbHMgLS1kaXJlY3RvcnkgZGlyXyogbWFwcGVyX2xvZ3MgbWlyZGVlcF9ydW5zIG1pcm5hX3Jlc3VsdHMqIHBkZnNfKgpgYGAKCiMgUmVzdWx0cwoKIyMgUGVlcCBvdXRwdXQgZmlsZSBmb3JtYXQKClRoZSBmb3JtYXR0aW5nIG9mIHRoaXMgQ1NWIGlzIHRlcnJpYmxlLiBJdCBoYXMgYSAzLWNvbHVtbiB0YWJsZSBvbiB0b3AKb2YgYSAxNy1jb2x1bW4gdGFibGUuIFRoaXMgbWFrZXMgcGFyc2luZyBhIGJpdCBvZiBhIHBhaW4gaW4gaXRzIHJhdwpmb3JtYXQuCgpgYGB7ciBjaGVjay1yZXN1bHRzLWZpbGUsIGV2YWw9VFJVRSwgZW5naW5lPSdiYXNoJ30KIyBMb2FkIGJhc2ggdmFyaWFibGVzIGludG8gbWVtb3J5CnNvdXJjZSAuYmFzaHZhcnMKCgpoZWFkIC1uIDMwICIke291dHB1dF9kaXJfdG9wfS9yZXN1bHRfMjJfMDRfMjAyNF90XzE1XzEwXzE2LmNzdiIKYGBgCgojIyBDcmVhdGUgbW9yZSBlYXNpbHkgcGFyYXNhYmxlIHJlc3VsdHMgZmlsZQoKVGhpcyB3aWxsIG1hdGNoIHRoZSBsaW5lIGJlZ2lubmluZyB3aXRoIGBwcm92aXNpb25hbCBpZGAgYW5kIHByaW50IHRvCnRoZSBlbmQgb2YgdGhlIGZpbGUgKHJlcHJlc2VudGVkIGJ5IHRoZSBgJHBgLiBgJGAgPSBlbmQsIGBwYCA9IHByaW50KQoKYGBge3IgcGFyc2FibGUtcmVzdWx0cy1maWxlLCBldmFsPVRSVUUsIGVuZ2luZT0nYmFzaCd9CiMgTG9hZCBiYXNoIHZhcmlhYmxlcyBpbnRvIG1lbW9yeQpzb3VyY2UgLmJhc2h2YXJzCgoKc2VkIC0tcXVpZXQgJy9wcm92aXNpb25hbCBpZC8sJHAnICIke291dHB1dF9kaXJfdG9wfS9yZXN1bHRfMjJfMDRfMjAyNF90XzE1XzEwXzE2LmNzdiIgXAo+ICIke291dHB1dF9kaXJfdG9wfS9wYXJzYWJsZS1yZXN1bHRfMjJfMDRfMjAyNF90XzE1XzEwXzE2LmNzdiIKCmhlYWQgIiR7b3V0cHV0X2Rpcl90b3B9L3BhcnNhYmxlLXJlc3VsdF8yMl8wNF8yMDI0X3RfMTVfMTBfMTYuY3N2IgpgYGAKCiMjIFJlYWQgaW4gb3V0cHV0IENTVgoKVGhpcyBjaHVuayBwcm92aWRlcyBhIG1vcmUgY29udmlzZSBvdmVydmlldyBvZiB0aGUgZGF0YSBhbmQgaXQncwpjb2x1bW5zLgoKYGBge3IgcmVhZC1pbi1yZXN1bHQtY3N2LCBldmFsPVRSVUV9CgptaXJkZWVwX3Jlc3VsdC5kZiA8LSByZWFkLmNzdigiLi4vb3V0cHV0LzExLjEtUGV2ZS1zUk5Bc2VxLW1pUmRlZXAyLTMxYnAtZmFzdHAtbWVyZ2VkLWNuaWRhcmlhbl9taVJCYXNlL3BhcnNhYmxlLXJlc3VsdF8yMl8wNF8yMDI0X3RfMTVfMTBfMTYuY3N2IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaGVhZGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2VwID0gIlx0IikKCnN0cihtaXJkZWVwX3Jlc3VsdC5kZikKCmBgYAoKIyMgbWlSTkFzIGNvdW50IGRhdGEKClRoaXMgcHJvdmlkZXMgc29tZSBydWRpbWVudGFyeSBudW1iZXJzIGZvciB0aGUgbWlSRGVlcDIgb3V0cHV0LgoKRnVydGhlciBhbmFseXNpcyBpcyBwb3NzaWJseSBkZXNpcmVkIHRvIGV2YWx1YXRlIHNjb3JlIHRocmVzaG9sZHMsIG1pUk5BCmZhbWlsaWVzLCBldGMuCgpgYGB7ciByZXN1bHRzLWNvdW50cywgZXZhbD1UUlVFLCBlbmdpbmU9J2Jhc2gnfQojIExvYWQgYmFzaCB2YXJpYWJsZXMgaW50byBtZW1vcnkKc291cmNlIC5iYXNodmFycwoKIyBUb3RhbCBwcmVkaWN0ZWQgbWlSTkFTCnRvdGFsX21pUk5Bcz0kKGF3ayAnTlIgPiAxJyAke291dHB1dF9kaXJfdG9wfS9wYXJzYWJsZS1yZXN1bHRfMjJfMDRfMjAyNF90XzE1XzEwXzE2LmNzdiBcCnwgd2MgLWwKKQoKZWNobyAiVG90YWwgb2YgcHJlZGljdGVkIG1pUk5BczogJHt0b3RhbF9taVJOQXN9IgplY2hvICIiCgojIE1hdGNoZXMgdG8ga25vd24gbWF0dXJlIG1pUk5BcwptYXR1cmVfbWlSTkFzPSQoYXdrIC1GJ1x0JyAnJDExICE9ICItIiAmJiAkMTEgIT0gIiIge3ByaW50ICQxMX0nICR7b3V0cHV0X2Rpcl90b3B9L3BhcnNhYmxlLXJlc3VsdF8yMl8wNF8yMDI0X3RfMTVfMTBfMTYuY3N2IFwKfCB3YyAtbAopCgplY2hvICJOdW1iZXIgb2Ygc2VlZCBtYXRjaGVzIHRvIGtub3duIG1pUk5BUzogJHttYXR1cmVfbWlSTkFzfSIKZWNobyAiIgoKIyBOb3ZlbCBtaVJOQXMKbm92ZWxfbWlSTkFzPSQoYXdrIC1GICJcdCIgJyQxMSA9PSAiLSIgfHwgJDExID09ICIiIHtwcmludCAkMTF9JyAke291dHB1dF9kaXJfdG9wfS9wYXJzYWJsZS1yZXN1bHRfMjJfMDRfMjAyNF90XzE1XzEwXzE2LmNzdiBcCnwgYXdrICdOUiA+IDEnIFwKfCB3YyAtbAopCgplY2hvICJOdW1iZXIgb2Ygbm92ZWwgbWlSTkFzOiAke25vdmVsX21pUk5Bc30iCgpgYGA=