# This file was produced by plot-vcfstats, the command line was: # plot-vcfstats -P -p zr1394_15_s456 zr1394_15_s456/zr1394_15_s456.vcf.gz.stats # # Edit as necessary and recreate the plots by running # python3 plot.py # # Title abbreviations: # 0 .. zr139 .. zr1394_15_s456.vcf.gz # img_fmt = 'png' # Use logarithimic X axis for allele frequency plots af_xlog = 0 # Plots to generate, set to 0 to disable plot_venn_snps = 1 plot_venn_indels = 1 plot_tstv_by_sample = 1 plot_hethom_by_sample = 1 plot_snps_by_sample = 1 plot_indels_by_sample = 1 plot_singletons_by_sample = 1 plot_depth_by_sample = 1 plot_SNP_count_by_af = 1 plot_Indel_count_by_af = 1 plot_SNP_overlap_by_af = 1 plot_Indel_overlap_by_af = 1 plot_dp_dist = 1 plot_hwe = 1 plot_concordance_by_af = 1 plot_r2_by_af = 1 plot_discordance_by_sample = 1 plot_tstv_by_af = 1 plot_indel_dist = 1 plot_indel_vaf = 1 plot_tstv_by_qual = 1 plot_substitutions = 1 # Set to 1 to use sample names for xticks instead of numeric sequential IDs # and adjust margins and font properties if necessary sample_names = 0 sample_margins = {'right':0.98, 'left':0.07, 'bottom':0.2} sample_font = {'rotation':45, 'ha':'right', 'fontsize':8} if sample_names==0: sample_margins=(); sample_font=(); #------------------------------------------------- import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import csv csv.register_dialect('tab', delimiter='\t', quoting=csv.QUOTE_NONE) import numpy def smooth(x,window_len=11,window='hanning'): if x.ndim != 1: raise ValueError("The function 'smooth' only accepts 1 dimension arrays.") if x.size < window_len: return x if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError("Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") s = numpy.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]] if window == 'flat': # moving average w = numpy.ones(window_len,'d') else: w = eval('numpy.'+window+'(window_len)') y = numpy.convolve(w/w.sum(),s,mode='valid') return y[(window_len//2-1):-(window_len//2)] dat = {} with open('counts_by_af.snps.dat', 'r') as f: reader = csv.reader(f, 'tab') for row in reader: if row[0][0] == '#': continue id = int(row[0]) if id not in dat: dat[id] = [] dat[id].append([float(row[1]),float(row[2])]) if plot_SNP_count_by_af: fig = plt.figure(figsize=(2*4.33070866141732,3.93700787401575*0.7)) ax1 = fig.add_subplot(111) ax1.set_ylabel('Number of sites') ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') ax1.set_yscale('log') if af_xlog: ax1.set_xscale('log') ax1.set_xlabel('Non-reference allele frequency') ax1.set_xlim(-0.05,1.05) has_data = 0 if 0 in dat and len(dat[0])>2: ax1.plot([row[0] for row in dat[0]], [row[1] for row in dat[0]], '-o',markersize=3, color='orange',mec='orange',label='zr139') has_data = 1 if has_data: ax1.legend(numpoints=1,markerscale=1,loc='best',prop={'size':10},frameon=False) plt.title('SNP count by AF') plt.subplots_adjust(bottom=0.2,left=0.1,right=0.95) plt.savefig('counts_by_af.snps.png') if img_fmt != 'png': plt.savefig('counts_by_af.snps.' + img_fmt) plt.close() dat = {} with open('counts_by_af.indels.dat', 'r') as f: reader = csv.reader(f, 'tab') for row in reader: if row[0][0] == '#': continue id = int(row[0]) if id not in dat: dat[id] = [] dat[id].append([float(row[1]),float(row[2])]) if plot_Indel_count_by_af: fig = plt.figure(figsize=(2*4.33070866141732,3.93700787401575*0.7)) ax1 = fig.add_subplot(111) ax1.set_ylabel('Number of sites') ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') ax1.set_yscale('log') if af_xlog: ax1.set_xscale('log') ax1.set_xlabel('Non-reference allele frequency') ax1.set_xlim(-0.05,1.05) has_data = 0 if 0 in dat and len(dat[0])>2: ax1.plot([row[0] for row in dat[0]], [row[1] for row in dat[0]], '-o',markersize=3, color='orange',mec='orange',label='zr139') has_data = 1 if has_data: ax1.legend(numpoints=1,markerscale=1,loc='best',prop={'size':10},frameon=False) plt.title('Indel count by AF') plt.subplots_adjust(bottom=0.2,left=0.1,right=0.95) plt.savefig('counts_by_af.indels.png') if img_fmt != 'png': plt.savefig('counts_by_af.indels.' + img_fmt) plt.close() dat = [] with open('tstv_by_af.0.dat', 'r') as f: reader = csv.reader(f, 'tab') for row in reader: if row[0][0] != '#': dat.append([float(x) for x in row]) if plot_tstv_by_af and len(dat)>2: fig = plt.figure(figsize=(4.33070866141732,3.93700787401575)) ax1 = fig.add_subplot(111) ax1.plot([row[0] for row in dat], [row[1] for row in dat], '-o',color='k',mec='k',markersize=3) ax1.set_ylabel('Number of sites',color='k') ax1.set_yscale('log') #ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') for tl in ax1.get_yticklabels(): tl.set_color('k') ax1.set_xlabel('Non-ref allele frequency') ax2 = ax1.twinx() ax2.plot([row[0] for row in dat], [row[2] for row in dat], '-o',color='orange',mec='orange',markersize=3) ax2.set_ylabel('Ts/Tv',color='orange') ax2.set_ylim(0,0.5+max(3,max(row[2] for row in dat))) ax1.set_xlim(0,1) for tl in ax2.get_yticklabels(): tl.set_color('orange') plt.subplots_adjust(right=0.88,left=0.15,bottom=0.11) plt.title('zr139') plt.savefig('tstv_by_af.0.png') if img_fmt != 'png': plt.savefig('tstv_by_af.0.' + img_fmt) plt.close() dat = [] with open('tstv_by_qual.0.dat', 'r') as f: reader = csv.reader(f, 'tab') for row in reader: if row[0][0] != '#': dat.append([float(x) for x in row]) if plot_tstv_by_qual and len(dat)>2: fig = plt.figure(figsize=(4.33070866141732,3.93700787401575)) ax1 = fig.add_subplot(111) ax1.plot([row[1] for row in dat], [row[2] for row in dat], '^-', ms=3, mec='orange', color='orange') ax1.set_ylabel('Ts/Tv',fontsize=10) ax1.set_xlabel('Number of sites\n(sorted by QUAL, descending)',fontsize=10) ax1.ticklabel_format(style='sci', scilimits=(-3,2), axis='x') ax1.set_ylim(min(2,min(row[2] for row in dat))-0.3,0.3+max(2.2,max(row[2] for row in dat))) plt.subplots_adjust(right=0.88,left=0.15,bottom=0.15) plt.title('zr139') plt.savefig('tstv_by_qual.0.png') if img_fmt != 'png': plt.savefig('tstv_by_qual.0.' + img_fmt) plt.close() dat = [] with open('indels.0.dat', 'r') as f: reader = csv.reader(f, 'tab') for row in reader: if row[0][0] != '#': dat.append([float(x) for x in row]) if plot_indel_dist and len(dat)>0: fig = plt.figure(figsize=(4.33070866141732,3.93700787401575)) ax1 = fig.add_subplot(111) ax1.bar([row[0]-0.5 for row in dat], [row[1] for row in dat], color='orange')# , edgecolor='orange') ax1.set_xlabel('InDel Length') ax1.set_ylabel('Count') ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') ax1.set_xlim(-20,20) plt.subplots_adjust(bottom=0.17) plt.title('zr139') plt.savefig('indels.0.png') if img_fmt != 'png': plt.savefig('indels.0.' + img_fmt) plt.close() dat = [ [0,'A>C',1832], [1,'A>G',10193], [2,'A>T',3053], [3,'C>A',3471], [4,'C>G',431], [5,'C>T',14569], [6,'G>A',0], [7,'G>C',1264], [8,'G>T',2574], [9,'T>A',3897], [10,'T>C',13762], [11,'T>G',592], ] if plot_substitutions: fig = plt.figure(figsize=(4.33070866141732,3.93700787401575)) cm = mpl.cm.get_cmap('autumn') n = 12 col = [] for i in list(range(n)): col.append(cm(1.*i/n)) ax1 = fig.add_subplot(111) ax1.bar([row[0] for row in dat], [row[2] for row in dat], color=col) ax1.set_ylabel('Count') ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') ax1.set_xlim(-0.5,n+0.5) plt.xticks([row[0] for row in dat],[row[1] for row in dat],rotation=45) plt.title('zr139') plt.savefig('substitutions.0.png') if img_fmt != 'png': plt.savefig('substitutions.0.' + img_fmt) plt.close() dat = [] with open('depth.0.dat', 'r') as f: reader = csv.reader(f, 'tab') for row in reader: if row[0][0] != '#': dat.append([float(x) for x in row]) if plot_dp_dist: fig = plt.figure(figsize=(4.33070866141732*1.2,3.93700787401575)) ax1 = fig.add_subplot(111) ax1.plot([row[0] for row in dat], [row[2] for row in dat], '-^', color='k') ax1.set_ylabel('Number of genotypes [%]',color='k') ax1.set_xlabel('Depth') ax2 = ax1.twinx() ax2.plot([row[0] for row in dat], [row[1] for row in dat], '-o', color='orange') ax2.set_ylabel('Cumulative number of genotypes [%]',color='orange') for tl in ax2.get_yticklabels(): tl.set_color('orange') plt.subplots_adjust(left=0.2,bottom=0.15,right=0.8) plt.title('zr139') plt.savefig('depth.0.png') if img_fmt != 'png': plt.savefig('depth.0.' + img_fmt) plt.close()