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Synopsis Understanding the mechanisms that underlie resilience in marine invertebrates is critical as climate change and 

human impacts transform coastal ecosystems. Metabolic plasticity, or an organism’s capacity to modulate energy production, 
allocation, and use, plays a central role in mediating resilience under environmental stress. While research on marine inverte- 
brate stress responses has grown, integrative studies that examine metabolic plasticity by connecting molecular, physiological, 
and organismal scales remain limited. In this Perspective, we advocate for the rigorous and thoughtful use of metabolomic 
and lipidomic approaches to understand resilience in marine systems through the lens of metabolic plasticity. We provide rec- 
ommendations for experimental design, summarize current methodologies, and provide an overview of commonly used data 
analysis approaches. Advances in other molecular approaches such as genomics, epigenomics, and transcriptomics can be har- 
nessed to further explore stress responses through multi-omic integrative analyses. As quantitative integrative analysis remains 
limited in marine fields, we call for a stronger integration of molecular, metabolomic, physiological, and organismal data sets to 

link mechanisms to phenotypes. We explore the use of these approaches in studies of marine invertebrates and highlight promis- 
ing areas of multi-omic research that deserve exploration. By embracing metabolic complexity and scaling from molecules to 

phenotypes, we suggest that the marine invertebrate research community will be better equipped to understand, anticipate, and 

mitigate the impacts of environmental change on marine ecosystems. 
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nergy metabolism is a central component of organ-
smal responses to environmental stressors. Under a
articular environmental condition, the Oxygen- and
apacity-Limitation of Thermal Tolerance (OCLTT)
ypothesis suggests that the optimal temperature for
n organism is one that maximizes its aerobic scope
 Pörtner 2001 , 2002 , 2010 ). Within the upper and lower
ounds of tolerance, or “pejus” temperatures, organ-

sms must respond to environmental stressors using
etabolic compensation ( Pörtner 2010 ; Pörtner et al.

017 ). Metabolic compensation can occur prior to the
nset of physiological or organismal manifestations of
tress. Specifically, once in the “pessimum” range, or-
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anisms shift to anaerobic processes, prioritizing en-
rgy conservation and essential function maintenance
t the expense of growth or reproduction ( Pörtner 2010 ;
örtner et al. 2017 ). In order to understand transitions
etween active and passive tolerance (sensu [ Pörtner et
l. 2017 ]), it is essential to examine metabolic responses,
s whole-organism physiological metrics alone offer an
ncomplete view of how organisms respond to stress. 

Examinations of metabolic responses using
etabolomics and lipidomics (see definitions in
ox 1 ) are increasingly used to investigate plastic-

ty in response to environmental stressors in marine
nvertebrates ( Fig. 1 A). These fields emerged in the
0th century allowing for increased high-throughput
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Interrogating metabolic plasticity in marine organisms 3

Fig. 1 Metadata for 68 published studies examining metabolic plasticity. Studies were papers examining metabolome and/or lipidome 
responses to environmental stress in marine invertebrates. See Appendix A for search terms and results. ( A ) Cumulative metabolomic 
and lipidomics papers published between 1993 and 2025. Published research papers were identified through Web of Science and ProQuest 
searches and supplemented with manual searches through Google Scholar. In this timeframe, 65 used metabolomics and eight studies used 
lipidomics. Publishing trends are also shown by phylum for cnidarian (17), crustacean (13), echinoderm (5), and molluscs (37). Two or fewer 
papers were published for annelids, brachiopods, and bryozoans each over this time frame, and therefore are not visualized separately. ( B ) 
Data acquisition methods of papers in Appendix A . Metabolomics and lipidomics data were collected primarily using untargeted 
experiments (77.9%), followed by targeted studies (22.1%), then semi-targeted studies (1.5%). One study used both targeted and 
untargeted methods. The majority of studies (92.6%) examined steady state responses, while 7.4% used 31 P, 13 C, or 15 N labeling methods 
to understand metabolic flux. ( C ). Other molecular methods used to integratively study metabolic plasticity with either lipidomics or 
metabolomics. A total of 30 of 65 metabolomics studies integrated an additional molecular method, while 7 of 8 lipidomics studies used an 
additional molecular method. Only two studies used more than two molecular methods (Rodriguez-Casariego: (2023): lipidomics, 
epigenomics, transcriptomics, microbiome; Wei et al. (2015) : metabolomics, transcriptomics, proteomics). 
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profiling through advances in mass spectrometry and
nuclear magnetic resonance (NMR) techniques ( Viant
2008 ; Lindon and Wilson 2016 ; Beale et al. 2018 ). How-
ever, use of these approaches in non-model systems was
not more prevalent until the 2000s due to challenges
in protocol development and compound identification
in non-model systems ( Viant 2008 ; Williams et al.
2011 ; Schock et al. 2014 ; Carriot et al. 2021 ). In re-
cent years, increased instrument sensitivity, expanded
databases and libraries, reduced costs, and improved
computational approaches have made metabolomics
and lipidomics more accessible ( Putri et al. 2013 ; Beale
et al. 2018 ; Munjal et al. 2022 ). 

Recent work has investigated how energetic con-
straints lead to susceptibility or resilience in response
to various stressors, such as temperature, ocean acid-
ification, toxin exposure, salinity, and hypoxia (see
Appendix A for additional examples). For example,
American lobster ( Homarus americanus ) exposure to
ocean acidification resulted in broad metabolic re-
programming, demonstrating plasticity in energy us-
age ( Noisette et al. 2021 ). Increased diversity of lipid
classes suggested deepwater corals ( Acropora cervicor-
nis ) employ heterotrophy more than shallow reef coun-
terparts to meet energetic demands in stressful con-
ditions ( Rodriguez-Casariego et al. 2023 ). The power
of metabolomic and lipidomic approaches lies in their
ability to reveal sublethal impacts that are not detectable
at the whole-organism level. Coral larvae exposed to
elevated temperatures demonstrated metabolic repro-
gramming under elevated temperature without a de-
crease in survival ( Huffmyer et al. 2024 ). In the blue
mussel ( Mytilus edulis ), 1H-NMR metabolomics re-
vealed differential energetic responses to OA stress in
males as compared to females ( Ellis et al. 2014 ). These
studies demonstrate that metabolic and lipidomic tools
can uncover subtle, yet critical shifts in energy alloca-
tion that underpin organismal resilience. 

Due to their direct connection to energy metabolism,
metabolomic and lipidomic approaches can be used to
quantify metabolic plasticity. Metabolic plasticity can
be achieved by processing the same compounds in dif-
ferent pathways to achieve similar results for cellular
metabolism ( Fendt et al. 2020 ), or through wholesale
shifts in metabolic pathways, particularly in changing
conditions or hostile environments ( Jia et al. 2019 ).
While the concept of metabolic plasticity has its origin
in cancer biology, we encourage its use in organismal bi-
ology to guide proper use of metabolomic and lipidomic
approaches. Placing metabolic plasticity at the center of
investigations provides critical insight into mechanisms
of organismal response to stress. 

This perspective highlights the applications of these
technologies to the interrogation of metabolic plastic-
ity. We propose a framework to navigate experimental
and analytical decisions centering these concepts. We
also demonstrate the power of combining these meth-
ods with the study of other molecular mechanisms, such
as gene expression. Finally, we highlight the impor-
tance of understanding these molecular mechanisms in
the context of whole-organism physiological metrics.
As metabolomics and lipidomics technologies become
widely-used in organismal biology, establishing consen-
sus around these practices will allow for rigorous, repro-
ducible, and biologically meaningful analyses to exam-
ine plasticity in important ecosystems. 

Experimental design choices influence 

the capacity to characterize metabolic 

plasticity 

Sampling considerations 

As is the case with any molecular tool, experimental de-
sign choices will influence data interpretation and ro-
bustness. We encourage readers to make appropriate
choices in the context of experimental hypotheses and
budget, and refer to published literature when deter-
mining the appropriate number of technical and biolog-
ical replicates ( Blaise et al. 2016 ; Jacyna et al. 2019 ; Lee
et al. 2022 ). Mass spectrometry labs can also provide
guidance on sample sizes, with most facilities recom-
mending at least six biological replicates per treatment
for adequate analytical power. Samples used should be
chosen with the scientific question in mind, especially if
sampling involves tissue isolation ( Fig. 2 ). For example,
studies in soft shell clams ( Beaudreau et al. 2024 ) and
abalone ( Nguyen et al. 2021 ) show that metabolomic
responses to thermal stress vary by tissue type, with
greater effects observed in gills and hemolymph com-
pared to muscle. In corals, single polyp approaches al-
low for examination of spatial biochemical structuring
in complex holobiont systems ( Roach et al. 2021 ) with
separate host and symbiont analyses showing distinct
metabolic responses between the partners ( Gamba et al.
2022 ). 

Samples should be processed and preserved in a way
that minimizes enzyme activity during metabolite ex-
traction ( Liu and Locasale 2017 ). In order to quench
metabolic activity and prevent degradation of com-
pounds, samples should be isolated (e.g., seawater re-
moved) and immediately snap-frozen in liquid nitro-
gen, stored at -80◦C, and transported using dry ice
or liquid nitrogen. Samples should not be stored in
reagents such as RNALater to avoid any alterations to
metabolic state during preservation. Avoid freeze thaw
cycles and perform any necessary processing or extrac-
tion steps on dry ice as required for specific protocols.
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Fig. 2 Decision tree for metabolomic and lipidomic experimental design. Researchers should consider if they are interested in a specific 
pathway, if they want to examine changes in the metabolome or lipidome over time, or quantify rate of change of compounds. For all 
experiments, researchers should use appropriate sample sizes, tissue types, and sampling points to address hypotheses. Samples should be 
isolated (e.g., seawater removed) and immediately snap-frozen in liquid nitrogen, stored at -80◦C, and transported using dry ice or liquid 
nitrogen. 
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efer to Liu and Locasale (2017) for a review of com-
ound extraction protocols. 
Time series, or time course, experiments can pro-

ide key insights into metabolic plasticity by examining
he dynamic nature of the metabolome and facilitating
omplete mapping of relationships between metabo-
ites or pathways of interest ( Sriyudthsak et al. 2016 ).
ime series experiments need to be designed with prior
nowledge of the turnover rate of target metabolites,
nd/or the time scale of physiological responses of in-
erest. Previous work has conducted metabolomics time
eries studies on the order of seconds to minutes to
haracterize compound synthesis ( Sekar et al. 2018 ) and
etabolic responses to starvation in microbial systems

 Link et al. 2015 ). Longer time scales such as weekly to
onthly sampling are better suited to capture seasonal

hanges ( Angelcheva et al. 2014 ; Rathore et al. 2021 ).
e direct readers to previous work that discuss consid-

rations for time series and dynamic metabolomic stud-
es ( Smilde et al. 2010 ; Nägele et al. 2016 ; Sriyudthsak et
l. 2016 ). 

nalytical considerations for data acquisition 

nalytical platform choice is an important method-
logical consideration and should be selected based
n the target compounds of interest, their chemical
omposition, desired output data format, and the ro-
ustness of the databases used for compound identi-
cation ( Fig. 2 ). Data can be acquired in three dif-

erent formats: targeted, semi-targeted, or untargeted
see definitions in Box 1 ). Targeted experiments pro-
ide specific concentrations of molecules (i.e., absolute
uantitation), allowing researchers to investigate spe-
ific pathways or compounds of interest ( Bennett et al.
008 ; Cajka and Fiehn 2016 ; Park et al. 2016 ; Liu and
ocasale 2017 ; Lee and Yokomizo 2018 ; Georgoulis et
l. 2022 ), such as documenting how membrane remod-
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eling was associated with physiological tipping points
in response to low pH in the Pacific oyster ( Cras-
sostrea gigas ) ( Lutier et al. 2021 ). Since targeted ex-
periments require intimate knowledge of an organ-
ism’s metabolic pathways, researchers, especially those
working in non-model marine systems, should con-
sider if compound nomenclature is conserved between
their organisms and those used to generate compound
databases. Untargeted experiments provide relative fea-
ture abundance differences between experimental con-
ditions or populations ( Doroghazi et al. 2014 ; Cajka and
Fiehn 2016 ; Liu and Locasale 2017 ; Lee and Yokomizo
2018 ). The majority of studies identified in Appendix
A used untargeted data acquisition approaches ( Fig.
1 B). This approach may be useful in non-model sys-
tems, where several molecules are likely uncharacter-
ized by existing databases. For example, a study in
reef-building corals used untargeted metabolomics and
compound identification to identify lipid classes (e.g.,
betaine lipids) that distinguished between thermally
resilient and sensitive colonies ( Roach et al. 2021 ),
and identify dipeptides that were important in heat
stress responses ( Williams, Chiles, et al. 2021 ). How-
ever, novel compound identification and feature an-
notation are time consuming and require comprehen-
sive reference databases and organismal knowledge ( Liu
and Locasale 2017 ). Identification of unknown com-
pounds may be easier for lipidomics due to conserved
nomenclature conventions based on compound struc-
ture. Semi-targeted data acquisition may be a sufficient
alternative to targeted or untargeted assays ( Breitling et
al. 2006 ; Gika et al. 2016 ; Liu and Locasale 2017 ; Reisz
et al. 2019 ). These experiments identify and absolutely
quantify a large number of known compounds, with-
out requiring standards for every compound. Diver-
sity of waxy ester and triglyceride compounds detected
with semi-targeted lipidomics in the coral A. cervicor-
nis highlight how outplanting in deep environments
promotes heterotrophy ( Rodriguez-Casariego et al.
2023 ). 

Metabolomic and lipidomic analyses are most com-
monly conducted to estimate metabolite absolute or
relative concentrations at a particular point in time,
known as “steady-state” measurements ( Fig. 1 B). Al-
though characterizing shifts in metabolite concentra-
tion with steady-state metabolomics can inform re-
searchers of relative differences in concentration of
metabolites, concentration alone does not directly relate
to metabolic flux (see definitions in Box 1 ), or the rate
at which metabolites pass through a metabolic path-
way ( Jang et al. 2018 ), which can provide rich informa-
tion on metabolic plasticity. It is important to consider
that increased pool size of a metabolite may be the re-
sult of either increased production or decreased down-
stream metabolism, resulting in accumulation ( Jang et
al. 2018 ; Huffmyer et al. 2024 ). Stable isotope tracing
can quantify metabolic flux of pathways of interest by
tracking the incorporation of labeled atoms from stable
isotope tracers into metabolites, providing insight into
pathway activity and regulation that cannot be obtained
with steady-state metabolomics alone ( Jang et al. 2018 ).
We direct the reader to previous literature that describes
stable isotope tracing methods in detail ( Creek et al.
2012 ; Fan et al. 2012 ; Chokkathukalam et al. 2014 ; Jang
et al. 2018 ; Balcells et al. 2019 ). Although stable iso-
tope tracing is less utilized in marine invertebrates ( Fig.
1 B), one promising use is the investigation of symbiotic
nutritional exchange and nutrient metabolism in reef-
building corals ( Hillyer et al. 2018 ; Chiles et al. 2022 ;
Huffmyer et al. 2024 ). These methods have also be ap-
plied to other organisms like the blue crab ( Callinectes
sapidus ) ( Holt and Kinsey 2002 ; Kinsey and Lee 2003 )
and red abalone (Haliotis rufescens) ( Tjeerdema et al.
1993 ), to track flux through central energy metabolism
reactions and provide insights into energetic state under
environmental stress. However, isotopic tracing studies
are more expensive and researchers should consider ad-
vantages and limitations prior to use. 

Metabolomic analyses are commonly performed us-
ing NMR, mass spectrometry (MS), or a combination
of the two ( Ren et al. 2015 ). Most MS analyses are
conducted as gas chromatography mass spectrometry
(GC-MS) or liquid chromatography mass spectrome-
try (LC-MS), the latter of which is commonly analyzed
using high performance (HPLC) or ultra high perfor-
mance liquid chromatography (UHPLC). GC-MS plat-
forms are well suited for volatile molecules ( Ren et al.
2015 ), LC-MS is commonly used for lipidomic applica-
tions quantifying polar, non-volatile compounds ( Cajka
and Fiehn 2014 ; Ren et al. 2015 ), and NMR (commonly,
1H-NMR) is used to quantify metabolites using inher-
ent magnetic properties ( Markley et al. 2017 ; Bingol
2018 ; Emwas et al. 2019 ). Platform specifications and
technical descriptions of the analytical pipelines have
been described elsewhere ( Naz et al. 2014 ; Beale et al.
2018 ) and are defined in Box 1 . While both MS and
NMR present limitations and challenges, recent efforts
have emphasized the advantages of using both meth-
ods for complete characterization of the metabolome
( Nagana Gowda and Raftery 2015 ). Previous work has
discussed considerations for compound identification
datasets and potential challenges in dataset nomen-
clature ( Kind et al. 2009 ; Neumann and Böcker 2010 ;
Blaženović et al. 2018 ; Sindelar and Patti 2020 ; Misra
2021 ; de Jonge et al. 2022 ). We recommend that re-
searchers determine whether targeted, semi-targeted,
untargeted analyses are required, then select the plat-
form(s) best suited for the size and nature of com-
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Fig. 3 Analytical considerations for metabolomic and lipidomic experiments. This table indicates suitable analytical options ( ie., single 
metabolite tests, unsupervised analysis, or supervised analyses) for different experimental objectives ( ie., examining changes to 
concentration or composition between treatments; examining correlations between compounds and either quantitative responses or time; 
or identifying compounds that drive differences between treatments), and provides an example of what the output visualization may look 
like. Researchers should determine which methods are most appropriate for their data and hypotheses. 
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ounds of interest while considering robustness of ref-
rence databases. 

ata analysis to effectively address 

uestions on marine invertebrate 

lasticity 

sing appropriate analytical methods to 

ddress hypotheses and challenges with 

ommonly used approaches 

he choice of analytical method to address questions
nd hypotheses is a critical decision when analyzing
etabolomic or lipidomic data ( Fig. 3 ). Here, we pro-

ide an overview of analytical approaches to answer
ommonly asked questions and provide specific consid-
rations in Fig. 3 . 

Prior to conducting statistical analyses, it is critical
o conduct biologically appropriate normalization, as-
ess quality controls (i.e., pooled biological quality con-
rol samples), and control for batch and confounding
ffects. The statistical approaches we discuss should be
sed with data that has been combined from negative
nd positive ion modes, and previously undergone nec-
ssary peak alignment and quantification, spectral de-
onvolution, and corrections ( Ren et al. 2015 ). We point
eaders to previous discussions of these aspects of data
nalysis ( Issaq et al. 2009 ; Li et al. 2014 ; Smith et al.
014 ; Zhao et al. 2019 ) and reviews that discuss ana-

ytical approaches for more details ( Worley and Powers
013 ; Checa et al. 2015 ; Ren et al. 2015 ; Zhao et al.

2019 ). 

ow does the concentration of a metabolite/lipid of in-
erest or the composition of the metabolome/lipidome
hange across groups or treatments? 
ome lines of questioning may require testing the con-
entrations of particular metabolites. If single metabo-
ite tests are necessary, analysis of variance (ANOVAs)
r linear models (general and generalized linear mod-
ls) are widely-used and robust methods useful for test-
ng specific hypotheses. When identification of a single

etabolite is desired, laboratory assays may be more
ppropriate than whole metabolome characterization
e.g., succinate quantification in ( Zittier et al. 2018 ) and
lycogen quantification in ( Chen et al. 2022 )). 

Many studies evaluate the composition of the
etabolome or lipidome as a multivariate response

nd examine variation in these responses between
roups, treatments, or across time. The most com-
only used unsupervised multivariate statistical ap-

roach is performing a permutational analysis of vari-
nce (PERMANOVA), which is non-parametric and
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well-suited for highly dimensional and non-normal
data ( Anderson 2017 ) should be paired with permu-
tational analyses of dispersion (PERMDISP) to evalu-
ate whether multivariate differences are a product of
centroid location and/or dispersion ( Anderson 2017 ).
For example, multivariate analyses were used to ex-
amine the influence of saxitoxin on metabolites and
lipids in M. edulis immune cells ( Beauclercq et al. 2023 ),
revealing significant differences in fatty acid profiles
when mussels were fed the toxin-producing Alexan-
drium catenella versus the non-toxic Tetraselmis suecia
algae. 

How do metabolomic or lipidomic features correlate
with quantitative responses or time? 
Examining the relationships between metabolomic and
lipidomic features with quantitative responses, phe-
notypes, or time can be accomplished through sev-
eral correlation-based and network approaches. We
point the reader to work discussing the nature of dy-
namic metabolomic datasets and analyses in more detail
( Smilde et al. 2010 ). Here, we discuss several approaches
utilized in biological studies. 

First, weighted gene co-expression network analyses
(WGCNA) are commonly used in gene expression stud-
ies to identify modules, or groups, of genes that share
expression patterns (i.e., co-expression) ( Langfelder
and Horvath 2008 ). This approach can be applied not
only to gene expression data, but also to metabolomic
and lipidomic data, which is less frequently utilized
( Pei et al. 2017 ). For example, WGCNA has been ap-
plied to characterize metabolomic responses in tomato
plants ( DiLeo et al. 2011 ), dinoflagellate algae ( Sui et
al. 2014 ), and pathogenic fungi ( Sun et al. 2024 ) but
has rarely been applied in the study of marine inver-
tebrate metabolomic or lipidomic analyses. WGCNA
also provides a framework to correlate time, physiolog-
ical responses, or survival with groups of metabolites or
lipids ( Langfelder and Horvath 2008 ; Pei et al. 2017 ).
For example, a study in corals correlated metabolites
and genes using WGCNA, but found no significant cor-
relations ( Drury et al. 2022 ). Exploration of the utility
of WGCNA approaches in the study of marine organ-
ism responses is warranted. 

ANOVA-simultaneous components analyses (ASCA)
can also be useful to examine multivariate responses
across time or multiple levels of factors of interest
( Jansen et al. 2005 ; Smilde et al. 2005 ; Bertinetto et
al. 2020 ). The strength of ASCA analyses is the ability
to decompose multivariate data according to factors or
variables of interest and visualize the effects and is par-
ticularly well suited for characterizing changes in re-
sponses across time ( Jansen et al. 2005 ). For example,
this approach has been used to identify metabolites that
contributed to differences by treatment, lifestage, and
their interaction in cuttlefish exposed to ocean acidifi-
cation conditions ( Minet et al. 2025 ). 

Which compounds drive differences between treat-
ments or groups? 
After data exploration through unsupervised analyses
and examining experimental effects such as time and
treatment variables, the next step is often identifica-
tion of individual metabolites or lipids (i.e., features)
that drive significant differences. Partial least squares
discriminant analysis (PLS-DA) can identify metabo-
lites or lipids that distinguish between groups of inter-
est ( Kalivodová et al. 2015 ; Saccenti and Timmerman
2016 ). Conclusions and interpretations of biological im-
portance of a particular metabolite or lipid must be
made by conducting functional or pathway analyses
and when contextualized with phenotypic or physiolog-
ical responses (see Enabling biological interpretation of
metabolic plasticity through enrichment analyses ). 

Significance Analysis of Microarray (or Metabolites;
SAM) models provide an additional method to iden-
tify differential features between treatment groups of in-
terest ( Nadon and Shoemaker 2002 ; Xia and Wishart
2011 ). Use of SAM in conjunction with other multivari-
ate methods demonstrated that heat-hardening upregu-
lates metabolic pathways to promote homeostasis in ele-
vated temperatures in Mytilus galloprovincialis mussels
( Georgoulis et al. 2022 ). SAM methods also identified
metabolites that differed by symbiont profiles, but not
heat stress, in the coral Pocillopora acuta ( Haydon et al.
2023 ). 

Machine learning (ML) approaches are increasing in
use as “big data” becomes more readily available for bi-
ological studies ( Greener et al. 2022 ). Broadly, machine
learning approaches are computer systems that learn or
adapt using statistical models to mimic human behavior
and recognize patterns. They are useful when datasets
are too complex, too large, or require automation be-
yond the capacity of human analysis ( Greener et al.
2022 ). Deep learning models are a subset of ML appro-
priate for large and complex datasets that utilize neural
networks and include many layers to learn hierarchical
representations of data ( Reel et al. 2021 ; Greener et al.
2022 ). Deep learning approaches require large amounts
of data—the more complex the problem, the more data
is required—and are “black box” approaches that result
in reduced interpretability ( Reel et al. 2021 ). ML ap-
proaches require careful attention to choice of models
(e.g., supervised or unsupervised), objectives (e.g., clus-
tering, regression, or classification) and proper design of
test and training datasets and procedures for training,
validating, and testing models ( Greener et al. 2022 ). 
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est practices in quantitative analyses: 
ontextualizing results and applying 

omplementary approaches 

iven the large number of data analysis tools avail-
ble to researchers and the diverse sets of hypothe-
es tested using lipidomic and metabolomic data, we
trongly encourage the use of multiple complementary
nalysis approaches to validate findings. Different sta-
istical methods capture distinct aspects of data struc-
ure. Univariate analyses identify individual metabolites
r lipids that differ significantly between conditions,
hile multivariate techniques ( Kalivodová et al. 2015 ;
accenti and Timmerman 2016 ) and ML approaches
eveal patterns and interactions across multiple vari-
bles ( Reel et al. 2021 ; Greener et al. 2022 ). Correla-
ion network analyses can further uncover biochemical
athway relationships ( Langfelder and Horvath 2008 ;
ei et al. 2017 ), while time series approaches track dy-
amic shifts over experimental conditions of interest
 Jansen et al. 2005 ; Smilde et al. 2005 ; Bertinetto et al.
020 ). Applying multiple statistical approaches to the
ame metabolomic or lipidomic dataset enhances the
eliability, depth, and interpretability of findings. For
xample, a combination of PCA, PLS-DA, and pair-
ise tests showed that the bryozoan Bugula neritina
etabolome was largely unchanged after heat stress,

emonstrating this species’ resilience to high tempera-
ure ( Gauff et al. 2025 ). Sensitivity of Mya arenaria and

ya truncata clams to marine heat waves was exam-
ned using PERMANOVA, linear mixed effects mod-
ls, and PLS-DA analysis to examine differential use
f metabolic pathways under stress ( Beaudreau et al.

2024 ). 
Metabolomic and lipidomic data provide valuable in-

ights into the biochemical state of an organism, but
hese data are effectively interpreted only when con-
extualized with phenotypic or physiological data. A
otal of 41 studies of the 68 represented in Fig. 1
aired molecular data with whole-organism physiol-
gy or phenotypic data ( Appendix A ). Without inte-
rating physiological responses and phenotypes such
s metabolic rate, growth, reproduction, or survival,
t is difficult to determine whether observed molecu-
ar shifts correspond to metabolic plasticity and result
n either adaptive or maladaptive responses. For ex-
mple, clams ( Sinonovacula constricta ) had an increase
n Arrhenius breakpoint temperature after heat hard-
ning, and increased glycerophospholipid abundance
uggests homeoviscous adaptation at higher tempera-
ures ( Zhang and Dong 2021 ). Marine copepods ( Apoc-
clops royi ) reared in hyposaline conditions for multi-
le generations demonstrated reproductive resilience,
ut metabolomics analysis showed that an increase in
naerobic stress is a “cost” to this resilience (Wind-
ng Hansen et al. 2022 ). The addition of physiolog-
cal or phenotypic data enables researchers to move
eyond descriptive metabolomic or lipidomic profiles
nd instead contextualize -omic data with organismal
unction, helping to uncover the mechanistic basis of

etabolic changes. 

nabling biological interpretation of metabolic 

lasticity through enrichment analyses 

ne approach to interpret complex metabolomic and
ipidomic datasets is to manually map compounds of in-
erest to known pathways. This approach is best used
hen metabolite and lipid pathways are well charac-

erized and conserved across organisms and when re-
earchers have a hypothesis regarding a specific pathway
sing a targeted approach. Of the 68 studies included

n Fig. 1 , 47 manually mapped compounds to known
athways. Many studies use publicly available databases
e.g., KEGG [ Kanehisa and Goto 2000 ] and HMDB
 Wishart et al. 2007 ]) to obtain pathway information.
or example, in reef-building corals, researchers ex-
mined shifts in glycolysis ( Huffmyer et al. 2024 ) and
mino acid metabolism under stress ( Chiles et al. 2022 ).
anamaker et al. (2019) used MetaMapp ( Barupal et al.

012 ) and Cytoscape ( Shannon et al. 2003 ) to visualize
ffected metabolic networks in Dungeness crab ( Can-
er magister ) juveniles under low pH and oxygen con-
itions, identifying disrupted amino acid metabolism.
his specific examination of pathways of interests pro-
ides a method for testing hypotheses regarding a par-
icular pathway or function. 

Enrichment analysis, originally developed for tran-
criptomics ( Khatri et al. 2012 ; Zhao and Rhee 2023 ), fa-
ilitates biological interpretation of molecular datasets
y linking changes in individual compound responses
ith large-scale shifts in biological processes. There

re three types of enrichment analyses—ranking-
ased enrichment, overrepresentation-based enrich-
ent, and network topology-based enrichment ( Wright

t al. 2015 ; Ihnatova et al. 2018 ; Nguyen et al. 2019 ;
eistlinger et al. 2021 ; Zhao and Rhee 2023 )—with

he latter two being more common in metabolomic
nd lipidomic studies and most appropriate for semi-
argeted and untargeted approaches ( Zhao and Rhee
023 ). Overrepresentation-based enrichment methods
etermine if specific pathways or functions are ob-
erved in a target dataset more than expected by chance
n comparison to a background dataset ( Das et al. 2020 ;

aleki et al. 2020 ). Network-topology based enrich-
ent incorporates additional factors that impact path-
ay activity, such as feature position in a pathway
r feature-feature interactions ( Bayerlová et al. 2015 ;
hnatova et al. 2018 ; Yang et al. 2019 ). Both methods
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Fig. 4 Enrichment with MetaboAnalyst. ( A ) Pros and cons of using MetaboAnalyst. Panels ( B ) and ( C ) show MetaboAnalyst (v6.0) Pathway 
Analysis output for an example differential metabolite dataset generated in a previous study of reef-building coral early life stages ( Huffmyer 
et al. (2025) ) to highlight potential challenges in using MetaboAnalyst with non-model marine invertebrate species. This dataset is available 
in Appendix B . ( B ) Differences in pathway analysis output based on reference KEGG database. Pathway analysis was conducted using 
either humans ( Homo sapiens ) or Caenorhabditis elegans as KEGG references. The top four pathway results are shown. While the top 
pathway did not change based on the database, there are differences in the remaining pathways identified, the number of metabolites in the 
dataset that match the database (Match Status), FDR, and pathway impact values. ( C ) KEGG pathway analysis results using C. elegans as a 
reference. Arrow and label box indicate the enrichment of glycolysis or gluconeogenesis pathways. FDR P -value is indicated by color. These 
pathways were not significantly enriched ( P -value = 1.0) and were considered low impact (impact = 0.10). Details of the glycolysis and 
gluconeogenesis KEGG pathway are shown, with red boxes indicating metabolites in the test set that matched to the KEGG pathway. 
While the dataset included core metabolites in the glycolysis and gluconeogenesis pathways such as “glucose,” “glucose-6-phosphate,” and 
“pyruvate,” only pyruvate was recognized as a hit by MetaboAnalyst. This is due to differences in the nomenclature of glucose and 
glucose-6-phosphate required by Metaboanalyst to match to pathways (“alpha-D-Glucose” and “alpha-D-Glucose 6-phosphate,”
respectively, as indicated in text label boxes). These results demonstrate that nomenclature and specificity of nomenclature can limit 
pathway analysis results in databases that rely on particular nomenclature. Results were not different when running against the C. elegans 
(nematode), Strongylocentrotus purpuratus (urchin) , Mus musculus (mouse), or human KEGG databases. Note that in the study ( Huffmyer et 
al. (2025) ) acknowledged this limitation and additionally examined glycolytic metabolic pathways through individual metabolite abundance. 
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rely on input data selection and background choice,
which critically influence results. Input datasets can in-
clude metabolite modules linked to physiology or ex-
perimental variables (e.g, WGCNA) or differential fea-
tures identified in multivariate analyses (e.g., VIP scores
from PLS-DA), while using unfiltere d data may yield
misleading results ( Chicco and Agapito 2022 ; Zhao and
Rhee 2023 ). Background sets often include all detected
compounds above noise thresholds, but more targeted
backgrounds may be needed depending on the study
design ( Zhao and Rhee 2023 ). For example, using all de-
tected compounds as a background may be appropriate
for an untargeted analysis, but not for a targeted assay
focusing on a specific pathway. 

The most commonly used enrichment platform is
Metabolomics Pathway Analysis ( Xia and Wishart
2010 ) through the web-based GUI MetaboAnalyst ( Xia
et al. 2009 ; Pang et al. 2024 ) ( Fig. 4 ), which sup-
ports both overrepresentation (e.g., Enrichment Analy-
sis module) and network topology analyses (e.g., Path-
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ay Analysis module) and significance testing using
isher’s tests ( Xia et al. 2009 ; Xia and Wishart 2010 ;
ang et al. 2024 ). Ten studies in Fig. 1 used the Path-
ay Analysis module of MetaboAnalyst, which requires
sers to select a KEGG reference library (last updated
ecember 2024). For example, Guscelli et al. (2023)
sed the Drosophila KEGG library for Pathway Anal-
sis and identified tricarboxylic acid cycle and amino
cid metabolism as significantly impacted in north-
rn shrimp ( Pandalus borealis ) exposed to ocean acid-
fication and warming. Combined over-representation
nalysis and pathway topology analysis can also be
mployed to robustly identify compounds and path-
ays that differentiate between treatments of inter-

st ( Nguyen et al. 2021 ; Noisette et al. 2021 ). Al-
hough designed for metabolomics, enrichment tools
ike MetaboAnalyst can be applied to lipidomics. Al-
ernatives such as Lipid Ontology (LION/web) offer a
omparable approach for lipidomics datasets support-
ng overrepresentation and ranking-based enrichment
nalyses (Molenaar et al. 2019 ). While no studies in Fig.
 conducted enrichment for lipidomics, LION/web has
een applied in other organisms including in rat hep-
tic cells (Molenaar et al. 2023 ) and cetacean blub-
er (Bories et al. 2021 ). Together, these examples high-

ight the widespread use of MetaboAnalyst for pathway-
ased interpretation and underscore the importance of
ransparent reporting of database choices and analysis
arameters to ensure reproducibility and biological rel-
vance. 

Compound nomenclature is a source of variabil-
ty and inconsistency for metabolomic and lipidomic
nrichment analyses, especially in non-model organ-
sms ( Fig. 4 ). Enrichment tools often rely on human-
entric or model organisms databases, creating chal-
enges for applications in non-model systems includ-
ng inflated pathway sizes, outdated databases, and mis-

atched compound names ( Wadi et al. 2016 ; Zhao and
hee 2023 ). Reference databases can use different on-

ologies to define pathways, which can change the num-
er of compounds in a specific pathway. Further, when
here is variation between databases and the number
f molecules included in a specific pathway, the num-
er of differential compounds varies in order to iden-
ify significant enrichment, altering biological interpre-
ations ( Karp et al. 2021 ). In addition to potential path-
ay misclassification, compound nomenclature varia-

ion can lead to data not being used in enrichment.
or instance, general terms like “glucose” may not map
o specific isomers in enrichment databases, leading
o data loss and biased interpretations ( Fig. 4 ). There-
ore, we recommend that researchers consider the type
f molecules in their dataset, the annotation quality of
he reference database and the availability of organism-
pecific pathways if required. If general biological path-
ays are the targets of interest, a more broad or model

ystem based database may be appropriate. On the other
and, if organism specific pathways are of interest, re-
earchers should identify databases from closely related
rganisms or create custom databases. Referencing pre-
ious work and comparative methods studies can assist
n decision making ( Ma et al. 2019 ; Chicco and Agapito
022 ; Mubeen et al. 2022 ; Wijesooriya et al. 2022 ; Zhao
nd Rhee 2023 ). Regardless, researchers should explic-
tly report which database(s) was used in enrichment
nalysis. 

inking responses across different levels 

f biological organization through 

ulti-omic integration 

ncreasing availability of large molecular datasets
resents a challenge in effectively integrating these
ata to understand organismal responses with im-
roved mechanistic interpretations. Analyzing data us-

ng molecular datasets at different levels of biological
rganization enhances the robustness and depth of sci-
ntific conclusions, bridges molecular mechanisms with
unctional outcomes, and reveals interactions that may
e overlooked in single-omics studies. Each approach
rovides unique insights: genomics assesses changes or
ifferences in allele frequencies; transcriptomics iden-
ifies gene expression patterns; metabolomics provides
nsights on shifts in metabolic pathways; lipidomics
aptures membrane dynamics and energy storage; and
pigenomics reveals regulatory modifications. 

Integration of two molecular approaches is common
 Fig. 1 C; Appendix A ). Of the 68 studies in Fig. 1 ,
9 used gene expression and metabolomics to under-
tand the molecular underpinnings of metabolic re-
ponses. For example, concurrent analysis of transcripts
nd metabolites can elucidate the relevant level of bio-
ogical organization impacted by environmental stress
n C. gigas , which exhibited an altered amino acid,
arbohydrate, and fatty acid metabolite profiles in re-
ponse to ocean acidification ( Liu et al. 2020 ). These
hanges were not only associated with downregulation
f corresponding genes, but also reductions in calci-
cation gene expression ( Liu et al. 2020 ). Similarly,
hermal stress elicited changes to gene expression and

etabolites associated with redox pathways in the rice
oral Montipora capitata ( Williams, Chiles, et al. 2021 )
nd analysis of genes and metabolites in early devel-
pmental stages in M. capitata reveal developmental
hifts in metabolism ( Huffmyer et al. 2025 ). In the
acific white shrimp ( Penaeus vannamei ), correlation
nd network analyses of metabolomic and transcrip-
omic data revealed that regulation of amino acid and
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lipid metabolism increased energy availability under
cold stress ( Zhu et al. 2024 ). Combining metabolomic
and lipidomic approaches is also common, with five
studies doing so ( Fig. 1 C; Appendix A ). Combined
metabolomic and lipidomic analysis can reveal changes
in active metabolic pathways and energy storage (e.g.,
Reddy et al. 2023 ) and provide a detailed view of lipid
storage, lipid metabolism, signaling, and cellular mem-
brane state ( Imbs et al. 2021 ; Rey et al. 2022 ). For
example, Costa et al. (2024) utilized lipidomic and
metabolomic approaches to assess the impact of red
tides on core metabolic pathways in reef building corals.
Lipids and metabolites provided predictive biomarkers
of Pocillopora damicornis performance in response to
ocean acidification ( Sogin et al. 2016 ) and combined
lipid and metabolomic analyses revealed shifts in lipid
metabolism during reproductive maturation in the mud
crab Scylla paramamosain ( Fu et al. 2022 ). 

While it is clear that integrative multi-omic ap-
proaches improve our mechanistic understanding of
organism responses, there are significant barriers in
conducting this work. Examining organismal response
to environmental stress would ideally include mea-
surements of molecular mechanisms (e.g., epigenet-
ics and gene expression), metabolic responses (e.g.,
metabolomics and lipidomics), and physiological and
phenotypic measurements (e.g., respiration, growth,
feeding behavior). This is often not feasible due to lim-
itations in biological material available for sampling,
time, personnel, and high cost of molecular approaches.
Here, we discuss the state of multi-omic integration in
the study of marine invertebrates and offer recommen-
dations to move the study of metabolic plasticity to-
wards integrative approaches. 

Methodologies for integrative analysis 

Approaches to integrate multiple -omic data sets gen-
erally fall into two categories: (1) individual analysis of
each data set followed by qualitative integrative inter-
pretation; and (2) quantitative integration of data sets
in joint statistical analyses (see review in ( Santiago-
Rodriguez and Hollister 2021 )). Here, we will highlight
examples of each approach and provide recommenda-
tions for use in marine invertebrate systems. We pro-
pose that multi-omic examinations should include both
individual -omic examination and quantitative integra-
tion of multi-omic data when appropriate and relevant
to biological hypotheses. 

Individual analysis of single-omic layers is a nec-
essary step to identify strong signals and patterns at
each level of biological organization and ensure proper
quality control prior to more complex multi-omic ap-
proaches ( Santiago-Rodriguez and Hollister 2021 ). The
patterns detected in single-omic analyses can help in-
form biological hypotheses that may then be pur-
sued through multi-omic integration. One approach
is to conduct a qualitative comparison and then nar-
rate a biological story using conclusions from single-
omic analyses, which is more common in marine in-
vertebrate studies (18 of the 27 studies in Appendix
A with multiple molecular datasets used qualitative
integrative interpretation). For example, Putnam et
al. (2016) utilized metabolomics and DNA methyla-
tion to examine plasticity in response to ocean acid-
ification and qualitatively discussed relationships be-
tween the two data types. Some studies use inte-
grative visualizations that show molecular data lay-
ers mapped onto shared pathways ( Wanamaker et al.
2019 ; Ren et al. 2020 ; Sun et al. 2021 ; Zhu et al. 2024 ),
which can assist in making sense of highly dimen-
sional data. It is important to shape these investiga-
tions using biology-driven questions and fully report
the limitations of qualitative comparisons when pro-
viding evidence for mechanistic explanations. Further,
it is critical to consider the interplay and interactions
of multiple partners in holobiont systems ( Williams
2024 ). 

Quantitative multi-omic integration offers a power-
ful way to move beyond side-by-side single-omic com-
parisons by using statistical and computational meth-
ods to combine data layers and uncover patterns that
may not be apparent when analyzing each dataset sepa-
rately ( Santiago-Rodriguez and Hollister 2021 ; Greener
et al. 2022 ). There is underexplored potential to uti-
lize quantitative integration through statistical analyses,
which are more common in biomedical contexts (see re-
view in ( Reel et al. 2021 )). Only 9 of 27 studies that em-
ployed multiple molecular methods used a quantitative
or statistical approach to integrate molecular datasets
and largely rely on correlations. 

Several statistical approaches used for individual
molecular datasets can be applied towards integra-
tive analysis. Coexpression and correlation-based ap-
proaches, such as WGCNA and network analyses, are
well suited for identifying groups of genes, lipids, or
other features that change together across samples and
highlight shared biological functions or coordinated
pathways ( Sun et al. 2022 ; Geng et al. 2024 ; Zhou et al.
2024 ; Zhu et al. 2024 ). Other methods, including DIA-
BLO and PLS-DA analyses ( Sun et al. 2022 ; Jing et al.
2023 ; Zhou et al. 2024 ), focus on selecting the most im-
portant features that differentiate between treatments or
groups of interest, which can provide a tool for multi-
omic biomarker discovery or building predictive mod-
els ( Zhang et al. 2011 ; Young and Alfaro 2018 ; Sweet
et al. 2021 ). For example, Sun et al. (2021) utilized
pairwise correlations to examine metabolic responses
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o salinity in the clam R. philippinarum, Geng et al.
2024) conducted correlation network analyses to iden-
ify genes and metabolites correlated with biomarkers in
he blue mussel ( M. galloprovincialis ), and Pespeni and
loyd (2023) used WGCNA to integrate microbiome
nd transcriptomic responses in sea stars. 

Machine learning approaches for multi-omic integra-
ion have promising applications for the study of ma-
ine invertebrate plasticity, but are not widely employed.

L approaches can be used with a variety of integra-
ion strategies, depending on how and when the data
re brought together ( Reel et al. 2021 ; Greener et al.
022 ; Manochkumar et al. 2023 ). Integration methods
an be unsupervised (e.g., cluster analyses, factor anal-
ses, Bayesian approaches), which are used to discover
tructure and patterns, or supervised (e.g., Bayesian
etworks, support vector machines, hierarchical classi-
ers, ensemble-based methods) in order to make pre-
ictions and classifications ( Reel et al. 2021 ; Greener
t al. 2022 ). For example, a metabolomics and tran-
criptomics study in corals used “MAGI,” which pro-
ides a method for integration of metabolite and gene
nformation ( Erbilgin et al. 2019 ) to study metabolite-
ene interactions in M. capitata under thermal stress
Williams, Panthmanathan, et al. 2021 ). We direct read-
rs to previous reviews that discuss challenges in multi-
mic integration in marine systems for a more detailed
iscussion ( Manochkumar et al. 2023 ). 

est practices for integrative analysis 

s with any analytical approach, best practices for
ulti-omic integration must be grounded in clear bi-

logical questions and hypotheses. Supervised meth-
ds are best suited for predictive tasks, such as classify-

ng phenotypes or forecasting physiological outcomes;
nsupervised methods are appropriate for discovering
tructure or patterns; and network or regression mod-
ls may be useful when the goal is to infer mecha-
isms or relationships among layers of data ( Reel et al.
021 ; Greener et al. 2022 ; Manochkumar et al. 2023 ).
egardless of the approach, thoughtful preprocessing

s essential as molecular data often differ in scale,
istribution, and feature count and high-dimensional
ata can easily overfit small datasets if not properly
onstrained ( Reel et al. 2021 ; Manochkumar et al.
2023 ). 

We recommend building a foundation of single-omic
nalyses before layering in complexity to develop bi-
logically relevant hypotheses and drive the responsi-
le use of more complex integration approaches. Multi-
mic integration should be used to explore biologi-
ally driven hypotheses in greater depth and uncover
atterns that aren’t detectable in analysis of single-
mic levels. However, relying solely on single-omic ap-
roaches or one integration approach may lead to over
implification or missed deeper relationships. Correla-
ive strategies, while informative, must be interpreted
ppropriately and the limitations of correlation ap-
roaches need to be acknowledged. Another challenge

s that many integration platforms are designed for hu-
an or model system datasets and are not always com-

atible with non-model organisms or complex experi-
ental designs (e.g., MetaboAnalyst). However, we can

earn from biomedical research, where multi-omic in-
egration has driven advances in health and medical re-
earch ( Acharjee et al. 2016 ; Beaulieu-Jones et al. 2019 ;
riantafyllidis and Tsanas 2019 ; Ghassemi et al. 2020 ;
ubinger et al. 2023 ; Jain and Jain 2024 ). These ap-
roaches are beginning to be applied to ecological and
volutionary biology ( Olden et al. 2008 ; Christin et al.
019 ; Lürig et al. 2021 ; Greener et al. 2022 ; Pichler and
artig 2023 ), and we argue that they are particularly
eeded in the study of non-model systems, such as ma-
ine invertebrates where stress responses involve com-
lex coordination across biological levels. With care-
ul application, these tools can help identify regulatory
rivers of resilience, build predictive models of organ-

smal health, and illuminate new layers of biological
omplexity in systems where mechanistic understand-
ng has traditionally been limited. 

onclusion 

etabolomics and lipidomics are powerful tools for ex-
mining metabolic plasticity in non-model marine in-
ertebrates. We encourage researchers to design clear,
estable hypotheses and use them to guide molecu-
ar investigations. Given the complexity of these data
ypes, appropriate statistical analysis may include com-
lementary univariate and multivariate approaches to

dentify compounds of interest, and pairing manual
nd programmatic pathway mapping with enrichment
ethods to understand the biological significance of

esults. Pairing molecular data with physiology and/or
henotype information may elucidate sublethal im-
acts of stress and provide a holistic understanding of
rganismal resilience. When appropriate, we encour-
ge researchers to pair metabolomic or lipidomic data
ith metrics at different levels of biological organi-

ation such as transcriptomics or proteomics as inte-
rating multi-omic data can reveal mechanistics links
etween molecular changes and organism-level traits,
roviding a more comprehensive understanding of
esilience. 

We also identify areas of growth for the application
f these methodologies to organismal biology. First and
oremost, thorough reporting in manuscripts is neces-
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sary to provide context and improve reproducibility.
Of the 68 studies identified in Fig. 1 , several were not
explicit about whether or not targeted, semi-targeted,
or untargeted data acquisition methods were used, or
presented pathway or enrichment results without spec-
ifying methods. The lack of this necessary information
makes it difficult for newer researchers to understand
best practices for the field. Raw data should be housed
in publicly accessible data repositories ( Santiago-
Rodriguez and Hollister 2021 ), similar to the NCBI
Short Read Archive or Gene Expression Omnibus.
Existing databases include Metabolomics Workbench
( https://w w w.metabolomicsworkbench.org/ ) and Mas-
sIVE ( https://massive.ucsd.edu/ProteoSAFe/static/
massive.jsp ). Effort should be made to improve an-
notation databases for non-model systems to use for
compound identification. More accurate databases can
facilitate improved enrichment analysis or quantitative
integration with other datasets. 
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ppendix A: 
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esults for marine invertebrate studies examining

etabolic plasticity in response to environmental stres-
ors. Searches were conducted using a University of

ashington login for Web of Science and ProQuest on
arch 24, 2025 and April 4, 2025, respectively. An ad-

itional 27 papers were added manually from Google
cholar searches. 
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